Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment

Abstract

Identifying the chromosomal targets of transcription factors is important for reconstructing the transcriptional regulatory networks underlying global gene expression programs. We have developed an unbiased genomic method called sequence tag analysis of genomic enrichment (STAGE) to identify the direct binding targets of transcription factors in vivo. STAGE is based on high-throughput sequencing of concatemerized tags derived from target DNA enriched by chromatin immunoprecipitation. We first used STAGE in yeast to confirm that RNA polymerase III genes are the most prominent targets of the TATA-box binding protein. We optimized the STAGE protocol and developed analysis methods to allow the identification of transcription factor targets in human cells. We used STAGE to identify several previously unknown binding targets of human transcription factor E2F4 that we independently validated by promoter-specific PCR and microarray hybridization. STAGE provides a means of identifying the chromosomal targets of DNA-associated proteins in any sequenced genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The STAGE strategy.
Figure 2: Correlation between yeast targets predicted by STAGE and ChIP-chip.
Figure 3: ChIP of E2F4 targets and validation of STAGE targets by ChIP-PCR.
Figure 4: Validation by ChIP-chip of E2F4 targets predicted by STAGE.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Pollack, J.R. & Iyer, V.R. Characterizing the physical genome. Nat. Genet. 32 (Suppl.), 515–521 (2002).

    Article  CAS  Google Scholar 

  2. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  3. Yu, H., Luscombe, N.M., Qian, J. & Gerstein, M. Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 19, 422–427 (2003).

    Article  CAS  Google Scholar 

  4. Phimister, B. Getting hip to the chip. Nat. Genet. 18, 195–197 (1998).

    Article  Google Scholar 

  5. Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  Google Scholar 

  6. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  7. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  Google Scholar 

  8. Weinmann, A.S., Yan, P.S., Oberley, M.J., Huang, T.H. & Farnham, P.J. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16, 235–244 (2002).

    Article  CAS  Google Scholar 

  9. Martone, R. et al. Distribution of NF-κB-binding sites across human chromosome 22. Proc. Natl. Acad. Sci. USA 100, 12247–12252 (2003).

    Article  CAS  Google Scholar 

  10. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  Google Scholar 

  11. Weinmann, A.S., Bartley, S.M., Zhang, T., Zhang, M.Q. & Farnham, P.J. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol. 21, 6820–6832 (2001).

    Article  CAS  Google Scholar 

  12. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  13. Velculescu, V.E., Vogelstein, B. & Kinzler, K.W. Analysing uncharted transcriptomes with SAGE. Trends Genet. 16, 423–425 (2000).

    Article  CAS  Google Scholar 

  14. Roberts, D.N., Stewart, A.J., Huff, J.T. & Cairns, B.R. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc. Natl. Acad. Sci. USA 100, 14695–14700 (2003).

    Article  CAS  Google Scholar 

  15. Kim, J. & Iyer, V.R. Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles. Mol. Cell. Biol. 24, 8104–8112 (2004).

    Article  CAS  Google Scholar 

  16. Hahn, J.S., Hu, Z., Thiele, D.J. & Iyer, V.R. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24, 5249–5256 (2004).

    Article  CAS  Google Scholar 

  17. Cam, H. & Dynlacht, B.D. Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3, 311–316 (2003).

    Article  CAS  Google Scholar 

  18. Pruitt, K.D., Tatusova, T. & Maglott, D.R. NCBI Reference Sequence project: update and current status. Nucleic Acids Res. 31, 34–37 (2003).

    Article  CAS  Google Scholar 

  19. Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic Acids Res. 31, 51–54 (2003).

    Article  CAS  Google Scholar 

  20. Odom, D.T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    Article  CAS  Google Scholar 

  21. Saha, S. et al. Using the transcriptome to annotate the genome. Nat. Biotechnol. 20, 508–512 (2002).

    Article  CAS  Google Scholar 

  22. Matsumura, H. et al. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc. Natl. Acad. Sci. USA 100, 15718–15723 (2003).

    Article  CAS  Google Scholar 

  23. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  CAS  Google Scholar 

  24. Hild, M. et al. An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biol. 5, R3 (2003).

    Article  CAS  Google Scholar 

  25. Kuras, L. & Struhl, K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399, 609–613 (1999).

    Article  CAS  Google Scholar 

  26. Iyer, V.R. in DNA Microarrays: A Molecular Cloning Manual (eds. D. Bowtell & J. Sambrook) 453–463 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2003).

    Google Scholar 

  27. Killion, P.J., Sherlock, G. & Iyer, V.R. The Longhorn Array Database (LAD): an open-source, MIAME compliant implementation of the Stanford Microarray Database (SMD). BMC Bioinformatics 4, 32 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Struhl for the HA-tagged TBP strain, P. Killion for assistance with the microarray database and T. Hart and members of the Iyer lab for assistance with microarray production. This work was supported in part by a grant from the Texas State Higher Education Coordinating Board, a US Department of Defense Breast Cancer Idea Award and a National Science Foundation Information Technology Research (ITR) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwanath R Iyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Summary of STAGE tags sequenced (PDF 12 kb)

Supplementary Table 2

Gene scores from E2F4 STAGE and SubSTAGE (PDF 114 kb)

Supplementary Table 3

Human E2F4 targets predicted by STAGE (between 10 kb and 6 kb upstream of transcription start site) (PDF 92 kb)

Supplementary Table 4

Human E2F4 targets predicted by STAGE (between 6 kb and 2 kb upstream of transcription start site) (PDF 80 kb)

Supplementary Table 5

Human E2F4 targets predicted by STAGE (1st intron) (PDF 63 kb)

Supplementary Table 6

Primer pairs for ChIP-PCR verification (PDF 92 kb)

Supplementary Methods (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Bhinge, A., Morgan, X. et al. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat Methods 2, 47–53 (2005). https://doi.org/10.1038/nmeth726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing