Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Tn7-based broad-range bacterial cloning and expression system

Abstract

For many bacteria, cloning and expression systems are either scarce or nonexistent. We constructed several mini-Tn7 vectors and evaluated their potential as broad-range cloning and expression systems. In bacteria with a single chromosome, including Pseudomonas aeruginosa, Pseudomonas putida and Yersinia pestis, and in the presence of a helper plasmid encoding the site-specific transposition pathway, site- and orientation-specific Tn7 insertions occurred at a single attTn7 site downstream of the glmS gene. Burkholderia thailandensis contains two chromosomes, each containing a glmS gene and an attTn7 site. The Tn7 system allows engineering of diverse genetic traits into bacteria, as demonstrated by complementing a biofilm-growth defect of P. aeruginosa, establishing expression systems in P. aeruginosa and P. putida, and 'GFP-tagging' Y. pestis. This system will thus have widespread biomedical and environmental applications, especially in environments where plasmids and antibiotic selection are not feasible, namely in plant and animal models or biofilms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suicide delivery vectors and mini-Tn7 elements.
Figure 2: Integration of mini-Tn7 in P. aeruginosa.
Figure 3: Tn7 insertion sites in various gram-negative bacteria.
Figure 4: Mini-Tn7 vector applications.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Craig, N.L. in Mobile DNA (eds. Berg, D.E. & Howe, M.M.) 211–225 (American Society for Microbiology, Washington, D.C., 1989).

    Google Scholar 

  2. Craig, N.L. Transposon Tn7. Curr. Top. Microbiol. Immunol. 204, 27–48 (1996).

    CAS  PubMed  Google Scholar 

  3. Peters, J.E. & Craig, N.L. Tn7: smarter than we thought. Nat. Rev. Mol. Cell Biol. 2, 806–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. McKown, R.L., Orle, K.A., Chen, T. & Craig, N.L. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J. Bacteriol. 170, 352–358 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J. & Schweizer, H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Hojberg, O., Schnider, U., Winteler, H.V., Sorensen, J. & Haas, D. Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65, 4085–4093 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bao, Y., Lies, D.P., Fu, H. & Roberts, G.P. An improved Tn7-based system for the single-copy insertion of cloned genes into the chromosomes of Gram-negative bacteria. Gene 109, 167–168 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Koch, B., Jensen, L.E. & Nybroe, O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria. J. Microbiol. Methods 45, 187–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, V.L. & Mekalanos, J.J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575–2583 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Staley, T.E., Lawrence, E.G. & Drahos, D.J. Variable specificity of Tn7::lacZY insertion into the chromosome of root-colonizing Pseudomonas putida strains. Mol. Ecol. 6, 85–87 (1997).

    Article  CAS  Google Scholar 

  12. Center for Disease Control and Prevention. Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC strategic planning workgroup. Morb. Mortal. Wkly. Rep. 49, 1–4 (2000).

  13. Dance, D.A.B. in Manson's Tropical Diseases (ed. Cook, G.C.) 925–930 (W.B. Saunders Company Ltd., London, 1996).

    Google Scholar 

  14. Howe, C. in The Oxford Medicine (ed. Christian, H.A.) 185–202 (Oxford University Press, New York, 1950).

    Google Scholar 

  15. Schweizer, H.P. & de Lorenzo, V. in The Pseudomonads - Genomics, life style and molecular architecture (ed. Ramos, J.L.) 317–350 (Kluwer Academic/Plenum, New York, 2004).

    Google Scholar 

  16. Schweizer, H.P. A method for construction of bacterial hosts for lac-based cloning and expression vectors: α complementation and regulated expression. Biotechniques 17, 452–456 (1994).

    CAS  PubMed  Google Scholar 

  17. Karkhoff-Schweizer, R.R. & Schweizer, H.P. Utilization of mini-Dlac transposable element to create an alpha-complementation and regulated expression system for molecular cloning in Pseudomonas aeruginosa. Gene 140, 7–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Trieu-Cuot, P., Carlier, C., Poyart-Salmeron, C. & Courvalin, P. An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. Gene 106, 21–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Stover, C.K. et al. New use of BCG for recombinant vaccines. Nature 351, 456–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Hoang, T.T., Kutchma, A.J., Becher, A. & Schweizer, H.P. Integration proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43, 59–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces genetics (The John Innes Foundation, Colney, Norwich, UK, 2000).

    Google Scholar 

  22. Charpentier, E. et al. Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K.N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative bacteria. J. Bacteriol. 172, 6568–6572 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stellwagen, A.E. & Craig, N.L. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 16, 6823–6834 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holloway, B.W. Genetic recombination in Pseudomonas aeruginosa. J. Gen. Microbiol. 13, 572–581 (1955).

    CAS  PubMed  Google Scholar 

  26. Chuanchuen, R. et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob. Agents Chemother. 45, 428–432 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brett, P.J., DeShazer, D. & Woods, D.E. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48, 317–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. De Kievit, T.R., Gillis, R., Marx, S., Brown, C. & Iglewski, B.H. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67, 1865–1873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sambrook, J. & Russell, D.W. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  30. Figurski, D.H. & Helinski, D.R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76, 1648–1652 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.P.S. was supported by National Institutes of Health grant AI058141. We thank K. Giesler and K. Quinn for their contributions to this project, and R. Gillis (University of Rochester) for assisting with biofilm experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert P Schweizer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Maps of mini-Tn7 suicide delivery base vectors. (PDF 112 kb)

Supplementary Fig. 2

Maps of selected mini-Tn7 elements. (PDF 150 kb)

Supplementary Fig. 3

Mini-Tn7 insertion does not affect GlmS expression. (PDF 93 kb)

Supplementary Fig. 4

Stability of mini-Tn7 insertions in the absence of selection. (PDF 156 kb)

Supplementary Table 1

Plasmid vectors derived in this study and GenBank accession numbers. (PDF 86 kb)

Supplementary Table 2

glmS genes in annotated bacterial genomes. (PDF 181 kb)

Supplementary Methods (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, KH., Gaynor, J., White, K. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2, 443–448 (2005). https://doi.org/10.1038/nmeth765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing