Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fiber-optic fluorescence imaging

Abstract

Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of photonic crystal fibers.
Figure 2: Scanning mechanisms.
Figure 3: An MEMS scanner.
Figure 4: Fiber-optic fluorescence imaging embodiments.

Similar content being viewed by others

References

  1. Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    CAS  PubMed  Google Scholar 

  2. Monfared, A. et al. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy. Otol. Neurotol. (in the press).

  3. Bashford, C.L., Barlow, C.H., Chance, B., Haselgrove, J. & Sorge, J. Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am. J. Physiol. 242, C265–C271 (1982).

  4. Chance, B., Cohen, P., Jobsis, F. & Schoener, B. Intracellular oxidation-reduction states in vivo. Science 137, 499–508 (1962).

    CAS  PubMed  Google Scholar 

  5. Mayevsky, A. & Chance, B. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217, 537–540 (1982).

    CAS  PubMed  Google Scholar 

  6. Epstein, J.R. & Walt, D.R. Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem. Soc. Rev. 32, 203–214 (2003).

    CAS  PubMed  Google Scholar 

  7. Yamaguchi, S. et al. View of a mouse clock gene ticking. Nature 409, 684 (2001).

    CAS  PubMed  Google Scholar 

  8. Bird, D. & Gu, M. Fibre-optic two-photon scanning fluorescence microscopy. J. Microsc. 208, 35–48 (2002).

    CAS  PubMed  Google Scholar 

  9. Ghiggino, K.P., Harris, M.R. & Spizzirri, P.G. Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope. Rev. Sci. Instrum. 63, 2999–3002 (1992).

    CAS  Google Scholar 

  10. Dabbs, T. & Glass, M. Fiber optic confocal microscope: FOCON. Appl. Opt. 31, 3030–3035 (1992).

    CAS  PubMed  Google Scholar 

  11. Bird, D. & Gu, M. Compact two-photon fluorescence microscope based on a single-mode fiber coupler. Opt. Lett. 27, 1031–1033 (2002).

    PubMed  Google Scholar 

  12. Bird, D. & Gu, M. Resolution improvement in two-photon fluorescence microscopy with a single-mode fiber. Appl. Opt. 41, 1852–1857 (2002).

    CAS  PubMed  Google Scholar 

  13. Delaney, P.M., Harris, M.R. & King, R.G. Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo. Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).

    CAS  PubMed  Google Scholar 

  14. Delaney, P.M., Harris, M.R. & King, R.G. Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33, 573–577 (1994).

    CAS  PubMed  Google Scholar 

  15. Delaney, P.M., King, R.G., Lambert, J.R. & Harris, M.R. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo. J. Anat. 184, 157–160 (1994).

    PubMed  PubMed Central  Google Scholar 

  16. Tai, S.P. et al. Two-photon fluorescence microscope with a hollow-core photonic crystal fiber. Opt. Express 12, 6122–6128 (2004).

    PubMed  Google Scholar 

  17. Kim, D., Kim, K.H., Yazdanfar, S. & So, P.T.C. Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy. Proceedings of SPIE 5700, 14–22 (2005).

    Google Scholar 

  18. Kim, D., Kim, K.H., Yazdanfar, S. & So, P.T.C. High speed handheld multiphoton multifoci microscopy. Proceedings of SPIE 5323, 267–272 (2004).

    Google Scholar 

  19. Carlson, K. et al. In vivo fiber-optic confocal reflectance microscope with an injection-molded miniature objective lens. Appl. Opt. 44, 1792–1796 (2005).

    PubMed  Google Scholar 

  20. Giniunas, L., Juskaitis, R. & Shatalin, S.V. Scanning fibre-optic microscope. Electronics Lett. 27, 724–726 (1991).

    Google Scholar 

  21. Giniunas, L., Juskaitis, R. & Shatalin, S.V. Endoscope with optical sectioning capability. Appl. Opt. 32, 2888–2890 (1993).

    CAS  PubMed  Google Scholar 

  22. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    PubMed  Google Scholar 

  23. Liang, C., Sung, K.B., Richards-Kortum, R. & Descour, M.R. Design of a high-numerical aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41, 4603–4610 (2002).

    PubMed  Google Scholar 

  24. Ota, T., Fukuyama, H., Ishihara, Y., Tanaka, H. & Takamatsu, T. In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy. J. Biomed. Opt. 10, 1–4 (2005).

    Google Scholar 

  25. Rouse, A.R. & Gmitro, A.F. Multispectral imaging with a confocal microendoscope. Opt. Lett. 25, 1708–1710 (2000).

    CAS  PubMed  Google Scholar 

  26. Swindle, L.D., Thomas, S.G., Freeman, M. & Delaney, P.M. View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging. J. Invest. Dermatol. 121, 706–712 (2003).

    CAS  PubMed  Google Scholar 

  27. Anikijenko, P. et al. In vivo detection of small subsurface melanomas in athymic mice using noninvasive fiber optic confocal imaging. J. Invest. Dermatol. 117, 1442–1448 (2001).

    CAS  PubMed  Google Scholar 

  28. Bussau, L.J. et al. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo. J. Anat. 192, 187–194 (1998).

    PubMed  PubMed Central  Google Scholar 

  29. Papworth, G.D., Delaney, P.M., Bussau, L.J., Vo, L.T. & King, R.G. In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon. J. Anat. 192, 489–495 (1998).

    PubMed  PubMed Central  Google Scholar 

  30. Rouse, A.R., Kano, A., Udovich, J.A., Kroto, S.M. & Gmitro, A.F. Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43, 5763–5771 (2004).

    PubMed  Google Scholar 

  31. Sabharwal, Y.S., Rouse, A.R., Donaldson, K.A., Hopkins, M.F. & Gmitro, A.F. Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38, 7133–7144 (1999).

    CAS  PubMed  Google Scholar 

  32. McLaren, W., Anikijenko, P., Barkla, D., Delaney, T.P. & King, R. In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI). Dig. Dis. Sci. 46, 2263–2276 (2001).

    CAS  PubMed  Google Scholar 

  33. McLaren, W.J., Anikijenko, P., Thomas, S.G., Delaney, P.M. & King, R.G. In vivo detection of morphological and microvascular changes of the colon in association with colitis using fiberoptic confocal imaging (FOCI). Dig. Dis. Sci. 47, 2424–2433 (2002).

    CAS  PubMed  Google Scholar 

  34. Vo, L.T. et al. Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice. J. Trauma 51, 98–104 (2001).

    CAS  PubMed  Google Scholar 

  35. Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    PubMed  Google Scholar 

  36. Jung, J.C. & Schnitzer, M.J. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).

    PubMed  Google Scholar 

  37. Levene, M.J., Dombeck, D.A., Kasischke, K.A., Molloy, R.P. & Webb, W.W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    PubMed  Google Scholar 

  38. Flusberg, B.A., Jung, J.C., Cocker, E.D., Anderson, E.P. & Schnitzer, M.J. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt. Lett. 30, 2272–2274 (2005).

    PubMed  Google Scholar 

  39. Gobel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

    PubMed  Google Scholar 

  40. Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001).

    CAS  Google Scholar 

  41. D'Hallewin, M-A., Khatib, S.E., Leroux, A., Bezdetnaya, L. & Guillemin, F. Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J. Urol. 174, 736–740 (2005).

    PubMed  Google Scholar 

  42. Laemmel, E. et al. Fibered confocal fluorescence microscopy (Cell-viZio™) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J. Vasc. Res. 41, 400–411 (2004).

    PubMed  Google Scholar 

  43. Bird, D. & Gu, M. Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt. Lett. 28, 1552–1554 (2003).

    PubMed  Google Scholar 

  44. Mehta, A.D., Jung, J.C., Flusberg, B.A. & Schnitzer, M.J. Fiber optic in vivo imaging in the mammalian nervous system. Curr. Opin. Neurobiol. 14, 617–628 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saleh, B.E.A. & Teich, M.C. Fundamentals of photonics (John Wiley & Sons, Inc., New York, USA, 1991).

    Google Scholar 

  46. Harris, M.R. (US patent 5120953, 1992).

  47. Fu, L., Gan, X. & Gu, M. use of a single-mode fiber coupler for second-harmonic-generation microscopy. Opt. Lett. 30, 385–387 (2005).

    PubMed  Google Scholar 

  48. Yariv, A. Three-dimensional pictorial transmission in optical fibers. Appl. Phys. Lett. 28, 88–89 (1976).

    Google Scholar 

  49. Helmchen, F., Tank, D.W. & Denk, W. Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. Appl. Opt. 41, 2930–2934 (2002).

    PubMed  Google Scholar 

  50. Myaing, M.T., Urayama, J., Braun, A. & Norris, T.B. Nonlinear propagation of negatively chirped pulses: Maximizing the peak intensity at the output of a fiber probe. Opt. Express 7, 210–214 (2000).

    CAS  PubMed  Google Scholar 

  51. Ouzounov, D.G. et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 27, 1513–1515 (2002).

    CAS  PubMed  Google Scholar 

  52. Knight, J.C. Photonic crystal fibres. Nature 424, 847–851 (2003).

    CAS  PubMed  Google Scholar 

  53. Gobel, W., Nimmerjahn, A. & Helmchen, F. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29, 1285–1287 (2004).

    PubMed  Google Scholar 

  54. Tai, S.-H., Chan, M.-C., Tsai, T.-H., Guol, S.-H., Chen, L.-J. & Sun, C.-K. Two-photon fluorescence microscope with a hollow-core photonic crystal fiber. Proceedings of SPIE 5691, 146–152 (2005).

    CAS  Google Scholar 

  55. Treacy, E.B. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454–458 (1969).

    Google Scholar 

  56. Fork, R.L., Brito Cruz, C.H., Becker, P.C. & Shank, C.V. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

    CAS  PubMed  Google Scholar 

  57. Ye, J.Y. et al. Development of a double-clad photonic-crystal-fiber based scanning microscope. Proceedings of SPIE 5700, 23–27 (2005).

    Google Scholar 

  58. Fu, L., Gan, X. & Gu, M. Nonlinear optical microscopy based on double-clad photonic crystal fibers. Opt. Express 13, 5528–5534 (2005).

    PubMed  Google Scholar 

  59. Hirano, M., Yamashita, Y. & Miyakawa, A. In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments. Brain Res. 732, 61–68 (1996).

    CAS  PubMed  Google Scholar 

  60. Lane, P.M., Dlugan, A.L.P., Richards-Kortum, R. & MacAulay, C.E. Fiber-optic confocal microscopy using a spatial light modulator. Opt. Lett. 25, 1780–1782 (2000).

    CAS  PubMed  Google Scholar 

  61. Gmitro, A.F. & Aziz, D. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18, 565–567 (1993).

    CAS  PubMed  Google Scholar 

  62. Lin, C.H. & Webb, R.H. Fiber-coupled multiplexed confocal microscope. Opt. Lett. 25, 954–957 (2000).

    CAS  PubMed  Google Scholar 

  63. Dong, C.Y., Koenig, K. & So P. Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium J. Biomed. Opt. 8, 450–459 (2003).

    PubMed  Google Scholar 

  64. Seibel, E.J. & Smithwick, Q.Y. Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30, 177–183 (2002).

    PubMed  Google Scholar 

  65. Delaney, P.M. & Harris, M.R. In Handbook of Biological Confocal Microscopy (ed. Pawley, J. B.) 515–523 (Plenum Press, New York, 1995).

    Google Scholar 

  66. Harris, M.R. (UK patent W09904301, 1999).

  67. Dickensheets, D. & Kino, G.S. Scanned optical fiber confocal microscope. Proceedings of SPIE 2184, 39–47 (1994).

    Google Scholar 

  68. Dickensheets, D.L. & Kino, G.S. Micromachined scanning confocal optical microscope. Opt. Lett. 21, 764–766 (1996).

    CAS  PubMed  Google Scholar 

  69. Hofmann, U., Muehlmann, S., Witt, M., Dorschel, K., Schutz, R. & Wagner, B. Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope. Proceedings of SPIE 3878, 29–38 (1999).

    Google Scholar 

  70. Piyawattanametha, W., Toshiyoshi, H., LaCosse, J. & Wu, M.C. Surface micromachined confocal scanning optical microscope. In Technical Digest Series of Conference on Lasers and Electro-Optics (CLEO), 447–448 (San Francisco, 2000).

    Google Scholar 

  71. Piyawattanametha, W., Patterson, P., Hah, D., Toshiyoshi, H. & Wu, M.C. A 2D scanner by surface and bulk micromachined angular vertical comb actuators. In IEEE/LEOS International Conference on Optical MEMS, 93–94 (Waikoloa, Hawaii, 2003).

    Google Scholar 

  72. Schenk, H. et al. Large deflection micromechanical scanning mirrors for linear scans and pattern generation. J. Select. Topics in Quantum Electronics 6, 715–722 (2000).

    CAS  Google Scholar 

  73. Lee, D. Solgaard, O. T. Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive. In Proceedings of the Solid-State Sensor and Actuator Workshop, 352–355 (Hilton Head, South Carolina, 2004).

    Google Scholar 

  74. Rector, D.M., Rogers, R.F. & George, J.S. A focusing image probe for assessing neural activity in vivo. J. Neurosci. Methods 91, 135–145 (1999).

    CAS  PubMed  Google Scholar 

  75. Kuiper, S. & Hendriks, B.H.W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

    CAS  Google Scholar 

  76. Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: an application of electrowetting. Eur. Phys. J. E 3, 159–163 (2000).

    CAS  Google Scholar 

  77. Kuiper, S., Hendriks, B.H.W., Hayes, R.A., Feenstra, B.J. & Baken, J.M.E. Electrowetting-based optics. Proceedings of SPIE 5908, 5908OR-1–5908OR-7 (2005).

    Google Scholar 

  78. George, M. Optical methods and sensors for in situ histology in surgery and endoscopy. Min. Invas. Ther. & Allied. Technol. 13, 95–104 (2004).

    CAS  Google Scholar 

  79. Fisher, J.A.N., Civillico, E.F., Contreras, D. & Yodh, A.G. In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes. Opt. Lett. 29, 71–73 (2004).

    PubMed  Google Scholar 

  80. Poe, G.R., Rector, D.M. & Harper, R.M. Hippocampal reflected optical patterns during sleep and waking states in the freely behaving cat. J. Neurosci. 14, 2933–2942 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, T.D., Contag, C.H., Mandella, M.J., Chan, N.Y. & Kino, G.S. Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection. Opt. Lett. 28, 1915–1917 (2003).

    PubMed  PubMed Central  Google Scholar 

  82. Wang, T.D., Contag, C.H., Mandella, M.J., Chan, N.Y. & Kino, G.S. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning. J. Biomed. Opt. 9, 735–742 (2004).

    PubMed  Google Scholar 

  83. Wang, T.D., Mandella, M.J., Contag, C.H. & Kino, G.S. Dual-axis confocal microscope for high resolution in vivo imaging. Opt. Lett. 28, 414–416 (2003).

    PubMed  PubMed Central  Google Scholar 

  84. Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003).

    CAS  PubMed  Google Scholar 

  85. Cheng, J.-X., & Xie, X.S. Coherent anti-Stokes Raman scattering microscopy: instrumentation theory, and applications. J. Phys. Chem. B 108, 827–840 (2004).

    Google Scholar 

  86. Kwon, S. & Lee, L.P. Micromachined transmissive scanning confocal microscope. Opt. Lett. 29, 706–708 (2004).

    PubMed  Google Scholar 

  87. Lee, K.-N., Jang, Y.-H., Choi, J. & Kim, H. Silicon scanning mirror with 54.74° slanted reflective surface for fluorescence scanning system. Proceedings of SPIE 5641, 56–66 (2004).

    Google Scholar 

  88. Sheard, S., Suhara, T. & Nishihara, H. Integrated-optic implementation of a confocal scanning optical microscope. Journal of Lightwave Technology 11, 1400–1403 (1993).

    Google Scholar 

  89. Thrush, E. et al. Integrated semiconductor verticle-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing. IEEE J. Quantum Electron. 40, 491–498 (2004).

    CAS  Google Scholar 

  90. McConnell, G. & Riis, E. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2. Phys. Med. Biol. 49, 4757–4763 (2004).

    PubMed  Google Scholar 

  91. McConnell, G. & Riis, E. Two-photon laser scanning fluorescence microscopy using photonic crystal fiber. J. Biomed. Opt. 9, 922–927 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work on fiber-optic imaging is supported by grants to M.J.S from the Human Frontier Science Program, the US National Institute on Drug Abuse, the US National Institute of Neurological Disorders and Stroke, the US National Science Foundation, the US Office of Naval Research, the Arnold & Mabel Beckman Foundation and the David & Lucille Packard Foundation. B.A.F is a National Science Foundation Graduate Research Fellow. E.D.C. is a member of the Stanford Biotechnology Program. W.P. is an affiliate of the National Electronics and Computer Technology Center of Thailand. E.L.M.C. is supported in part by a Dean's Fellowship, Stanford School of Medicine. We thank R. Kristiansen of C. Fibre for providing images of photonic crystal fiber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J Schnitzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flusberg, B., Cocker, E., Piyawattanametha, W. et al. Fiber-optic fluorescence imaging. Nat Methods 2, 941–950 (2005). https://doi.org/10.1038/nmeth820

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing