Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional identification of sensory mechanisms required for developmental song learning

Abstract

A young male zebra finch (Taeniopygia guttata) learns to sing by copying the vocalizations of an older tutor in a process that parallels human speech acquisition. Brain pathways that control song production are well defined, but little is known about the sites and mechanisms of tutor song memorization. Here we test the hypothesis that molecular signaling in a sensory brain area outside of the song system is required for developmental song learning. Using controlled tutoring and a pharmacological inhibitor, we transiently suppressed the extracellular signal–regulated kinase signaling pathway in a portion of the auditory forebrain specifically during tutor song exposure. On maturation, treated birds produced poor copies of tutor song, whereas controls copied the tutor song effectively. Thus the foundation of normal song learning, the formation of a sensory memory of tutor song, requires a conserved molecular pathway in a brain area that is distinct from the circuit for song motor control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental timeline.
Figure 2: Quantitative song analysis results.
Figure 3: Auditory lobule cannula placements and zenk in situ hybridization.
Figure 4: Plots of song similarity scores and position of cannula tips.
Figure 5: Test of U0126 effects on song discrimination.

Similar content being viewed by others

References

  1. Konishi, M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22, 770–783 (1965).

    CAS  PubMed  Google Scholar 

  2. Nottebohm, F. & Arnold, A.P. Sexual dimorphism in vocal control areas of the songbird brain. Science 194, 211–213 (1976).

    Article  CAS  Google Scholar 

  3. Doupe, A.J., Solis, M.M., Kimpo, R. & Boettiger, C.A. Cellular, circuit and synaptic mechanisms in song learning. Ann. NY Acad. Sci. 1016, 495–523 (2004).

    Article  Google Scholar 

  4. Fee, M.S., Kozhevnikov, A.A. & Hahnloser, R.H. Neural mechanisms of vocal sequence generation in the songbird. Ann. NY Acad. Sci. 1016, 153–170 (2004).

    Article  Google Scholar 

  5. Cheng, H.Y. & Clayton, D.F. Activation and habituation of extracellular signal–regulated kinase phosphorylation in zebra finch auditory forebrain during song presentation. J. Neurosci. 24, 7503–7513 (2004).

    Article  CAS  Google Scholar 

  6. Chew, S.J., Mello, C., Nottebohm, F., Jarvis, E. & Vicario, D.S. Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc. Natl. Acad. Sci. USA 92, 3406–3410 (1995).

    Article  CAS  Google Scholar 

  7. Mello, C., Nottebohm, F. & Clayton, D. Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. J. Neurosci. 15, 6919–6925 (1995).

    Article  CAS  Google Scholar 

  8. Mello, C.V., Vicario, D.S. & Clayton, D.F. Song presentation induces gene expression in the songbird forebrain. Proc. Natl. Acad. Sci. USA 89, 6818–6822 (1992).

    Article  CAS  Google Scholar 

  9. Stripling, R., Volman, S.F. & Clayton, D.F. Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. J. Neurosci. 17, 3883–3893 (1997).

    Article  CAS  Google Scholar 

  10. Bolhuis, J.J., Zijlstra, G.G., Boer-Visser, A.M. & Van Der Zee, E.A. Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc. Natl. Acad. Sci. USA 97, 2282–2285 (2000).

    Article  CAS  Google Scholar 

  11. Bolhuis, J.J., Hetebrij, E., Boer-Visser, A.M., De Groot, J.H. & Zijlstra, G.G. Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. Eur. J. Neurosci. 13, 2165–2170 (2001).

    Article  CAS  Google Scholar 

  12. Phan, M.L., Pytte, C.L. & Vicario, D.S. Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc. Natl. Acad. Sci. USA 103, 1088–1093 (2006).

    Article  CAS  Google Scholar 

  13. Terpstra, N.J., Bolhuis, J.J. & Boer-Visser, A.M. An analysis of the neural representation of birdsong memory. J. Neurosci. 24, 4971–4977 (2004).

    Article  CAS  Google Scholar 

  14. Bozon, B. et al. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Phil. Trans. R. Soc. Lond. B 358, 805–814 (2003).

    Article  CAS  Google Scholar 

  15. Davis, S., Vanhoutte, P., Pages, C., Caboche, J. & Laroche, S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572 (2000).

    Article  CAS  Google Scholar 

  16. Favata, M.F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).

    Article  CAS  Google Scholar 

  17. Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 14, 311–317 (2004).

    Article  CAS  Google Scholar 

  18. Jin, H. & Clayton, D.F. Localized changes in immediate-early gene regulation during sensory and motor learning in zebra finches. Neuron 19, 1049–1059 (1997).

    Article  CAS  Google Scholar 

  19. Sturdy, C.B., Phillmore, L.S., Sartor, J.J. & Weisman, R.G. Reduced social contact causes auditory perceptual deficits in zebra finches, Taeniopygia guttata. Anim. Behav. 62, 1207–1218 (2001).

    Article  Google Scholar 

  20. Roper, A. & Zann, R. The onset of song learning and song tutor selection in fledgling zebra finches. Ethology 112, 458–470 (2006).

    Article  Google Scholar 

  21. Eales, L.A. Song learning in female-raised zebra finches: another look at the sensitive phase. Anim. Behav. 35, 1356–1365 (1987).

    Article  Google Scholar 

  22. Tchernichovski, O., Mitra, P.P., Lints, T. & Nottebohm, F. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).

    Article  CAS  Google Scholar 

  23. Martin, K.C. et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18, 899–912 (1997).

    Article  CAS  Google Scholar 

  24. Apergis-Schoute, A.M., Debiec, J., Doyere, V., LeDoux, J.E. & Schafe, G.E. Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus: a role for presynaptic plasticity in the fear system. J. Neurosci. 25, 5730–5739 (2005).

    Article  CAS  Google Scholar 

  25. Tchernichovski, O., Nottebohm, F., Ho, C.E., Pesaran, B. & Mitra, P.P. A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176 (2000).

    Article  CAS  Google Scholar 

  26. Basham, M.E., Nordeen, E.J. & Nordeen, K.W. Blockade of NMDA receptors in the anterior forebrain impairs sensory acquisition in the zebra finch (Poephila guttata). Neurobiol. Learn. Mem. 66, 295–304 (1996).

    Article  CAS  Google Scholar 

  27. Bolhuis, J.J. & Gahr, M. Neural mechanisms of birdsong memory. Nat. Rev. Neurosci. 7, 347–357 (2006).

    Article  CAS  Google Scholar 

  28. Cynx, J. & Nottebohm, F. Role of gender, season and familiarity in discrimination of conspecific song by zebra finches (Taeniopygia guttata). Proc. Natl. Acad. Sci. USA 89, 1368–1371 (1992).

    Article  CAS  Google Scholar 

  29. Scharff, C., Nottebohm, F. & Cynx, J. Conspecific and heterospecific song discrimination in male zebra finches with lesions in the anterior forebrain pathway. J. Neurobiol. 36, 81–90 (1998).

    Article  CAS  Google Scholar 

  30. Nottebohm, F., Stokes, T.M. & Leonard, C.M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976).

    Article  CAS  Google Scholar 

  31. Doupe, A.J. & Kuhl, P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article  CAS  Google Scholar 

  32. Olveczky, B.P., Andalman, A.S. & Fee, M.S. Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol. 3, e153 (2005).

    Article  Google Scholar 

  33. Bottjer, S.W., Miesner, E.A. & Arnold, A.P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).

    Article  CAS  Google Scholar 

  34. Scharff, C. & Nottebohm, F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11, 2896–2913 (1991).

    Article  CAS  Google Scholar 

  35. Haesler, S. et al. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biol. 5, e321 (2007).

    Article  Google Scholar 

  36. Adret, P. In search of the song template. Ann. NY Acad. Sci. 1016, 303–324 (2004).

    Article  Google Scholar 

  37. Kruse, A.A., Stripling, R. & Clayton, D.F. Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiol. Learn. Mem. 82, 99–108 (2004).

    Article  CAS  Google Scholar 

  38. Vates, G.E., Broome, B.M., Mello, C.V. & Nottebohm, F. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J. Comp. Neurol. 366, 613–642 (1996).

    Article  CAS  Google Scholar 

  39. Terpstra, N.J., Bolhuis, J.J., Riebel, K., van der Burg, J.M. & Boer-Visser, A.M. Localized brain activation specific to auditory memory in a female songbird. J. Comp. Neurol. 494, 784–791 (2006).

    Article  Google Scholar 

  40. Kim, J.J., Song, E.Y. & Kosten, T.A. Stress effects in the hippocampus: synaptic plasticity and memory. Stress 9, 1–11 (2006).

    Article  CAS  Google Scholar 

  41. Sauro, M.D., Jorgensen, R.S. & Pedlow, C.T. Stress, glucocorticoids and memory: a meta-analytic review. Stress 6, 235–245 (2003).

    Article  CAS  Google Scholar 

  42. Park, K.H. & Clayton, D.F. Influence of restraint and acute isolation on the selectivity of the adult zebra finch zenk gene response to acoustic stimuli. Behav. Brain Res. 136, 185–191 (2002).

    Article  Google Scholar 

  43. Huesmann, G.R. & Clayton, D.F. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 52, 1061–1072 (2006).

    Article  CAS  Google Scholar 

  44. Gahr, M. Neural song control system of hummingbirds: comparison to swifts, vocal learning (songbirds) and nonlearning (Suboscines) passerines, and vocal learning (budgerigars) and nonlearning (dove, owl, gull, quail, chicken) nonpasserines. J. Comp. Neurol. 426, 182–196 (2000).

    Article  CAS  Google Scholar 

  45. Jarvis, E.D. & Nottebohm, F. Motor-driven gene expression. Proc. Natl. Acad. Sci. USA 94, 4097–4102 (1997).

    Article  CAS  Google Scholar 

  46. Hessler, N.A. & Doupe, A.J. Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. J. Neurosci. 19, 10461–10481 (1999).

    Article  CAS  Google Scholar 

  47. Kozhevnikov, A.A. & Fee, M.S. Singing-related activity of identified HVC neurons in the zebra finch. J. Neurophysiol. 97, 4271–4283 (2007).

    Article  Google Scholar 

  48. Kao, M.H., Doupe, A.J. & Brainard, M.S. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433, 638–643 (2005).

    Article  CAS  Google Scholar 

  49. Leonardo, A. Experimental test of the birdsong error-correction model. Proc. Natl. Acad. Sci. USA 101, 16935–16940 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Tchernichovski for consultation on experimental design and song analysis, C.D. Meliza for advice on operant training hardware and procedures, R. Stripling for Labview programming expertise, J. Lee for Matlab assistance and A. Feng, K. Christie and M. Monfils for consultations and technical support for the electrophysiology experiment. We also thank G. Robinson, T. Small and K. Replogle for manuscript comments. This work was supported by an Institute for Genomic Biology Postdoctoral Fellowship, a US National Institute on Deafness and Other Communication Disorders Sensory Neuroscience Postdoctoral Training Grant, a US National Institute of Neurological Disorders and Stroke Postdoctoral National Research Service Award (S.E.L.) and a US National Institutes of Health RO1 grant (NS045264, D.F.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.E.L. and D.F.C. designed the experiments, S.E.L. acquired and analyzed the data, and S.E.L. and D.F.C. wrote the manuscript.

Corresponding authors

Correspondence to Sarah E London or David F Clayton.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Table 1 and Methods (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

London, S., Clayton, D. Functional identification of sensory mechanisms required for developmental song learning. Nat Neurosci 11, 579–586 (2008). https://doi.org/10.1038/nn.2103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing