Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity

Abstract

The dynamic ability of neuronal dendrites to shape and integrate synaptic responses is the hallmark of information processing in the brain. Effectively studying this phenomenon requires concurrent measurements at multiple sites on live neurons. Substantial progress has been made by optical imaging systems that combine confocal and multiphoton microscopy with inertia-free laser scanning. However, all of the systems developed so far restrict fast imaging to two dimensions. This severely limits the extent to which neurons can be studied, as they represent complex three-dimensional structures. Here we present a new imaging system that utilizes a unique arrangement of acousto-optic deflectors to steer a focused, ultra-fast laser beam to arbitrary locations in three-dimensional space without moving the objective lens. As we demonstrate, this highly versatile random-access multiphoton microscope supports functional imaging of complex three-dimensional cellular structures such as neuronal dendrites or neural populations at acquisition rates on the order of tens of kilohertz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional versus three-dimensional AOD Scanning.
Figure 2: Optical layout and axial scan range.
Figure 3: Structural imaging with different three-dimensional scanning modes.
Figure 4: Structural imaging of neurons.
Figure 5: Functional imaging of CA1 pyramidal neurons.
Figure 6: Fast three-dimensional monitoring of dendritic calcium dynamics.

Similar content being viewed by others

References

  1. Megias, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  CAS  Google Scholar 

  2. Ambros-Ingerson, J. & Holmes, W.R. Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus 15, 302–315 (2005).

    Article  Google Scholar 

  3. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  Google Scholar 

  4. Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).

    Article  CAS  Google Scholar 

  5. Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).

    Article  CAS  Google Scholar 

  6. Markram, H., Helm, P.J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 485, 1–20 (1995).

    Article  CAS  Google Scholar 

  7. Kovalchuk, Y., Eilers, J., Lisman, J. & Konnerth, A. NMDA receptor-mediated subthreshold Ca2+ signals in spines of hippocampal neurons. J. Neurosci. 20, 1791–1799 (2000).

    Article  CAS  Google Scholar 

  8. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  Google Scholar 

  9. Yuste, R., Majewska, A., Cash, S.S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

    Article  CAS  Google Scholar 

  10. Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).

    Article  CAS  Google Scholar 

  11. Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    Article  CAS  Google Scholar 

  12. Hoogland, T.M. & Saggau, P. Facilitation of L-type Ca2+ channels in dendritic spines by activation of β2 adrenergic receptors. J. Neurosci. 24, 8416–8427 (2004).

    Article  CAS  Google Scholar 

  13. Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239 (1999).

    Article  CAS  Google Scholar 

  14. Salome, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Methods 154, 161–174 (2006).

    Article  CAS  Google Scholar 

  15. Iyer, V., Hoogland, T.M. & Saggau, P. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J. Neurophysiol. 95, 535–545 (2006).

    Article  Google Scholar 

  16. Bansal, V., Patel, S. & Saggau, P. High-speed addressable confocal microscopy for functional imaging of cellular activity. J. Biomed. Opt. 11, 34003 (2006).

    Article  Google Scholar 

  17. Lv, X.H., Zhan, C., Zeng, S.Q., Chen, W.R. & Luo, Q.M. Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector. Rev. Sci. Instrum. 77, 046101 (2006).

    Article  Google Scholar 

  18. Lechleiter, J.D., Lin, D.T. & Sieneart, I. Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophys. J. 83, 2292–2299 (2002).

    Article  CAS  Google Scholar 

  19. Saggau, P. New methods and uses for fast optical scanning. Curr. Opin. Neurobiol. 16, 543–550 (2006).

    Article  CAS  Google Scholar 

  20. Zhu, L., Sun, P.C. & Fainman, Y. Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror. Appl. Opt. 38, 5350–5354 (1999).

    Article  CAS  Google Scholar 

  21. Oku, H., Hashimoto, K. & Ishikawa, M. Variable-focus lens with 1-kHz bandwidth. Opt. Express 12, 2138–2149 (2004).

    Article  Google Scholar 

  22. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005).

    Article  Google Scholar 

  23. Durst, M.E., Zhu, G.H. & Xu, C. Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 14, 12243–12254 (2006).

    Article  Google Scholar 

  24. Babin, A.A., Kartashov, D.V. & Kulagin, D.I. Focusing femtosecond radiation with an axicon. IEEE J. Quantum Electron. 32, 308–310 (2002).

    Article  CAS  Google Scholar 

  25. Dufour, P., Piche, M., De Koninck, Y. & McCarthy, N. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Appl. Opt. 45, 9246–9252 (2006).

    Article  Google Scholar 

  26. Gobel, W., Kampa, B.M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4, 73–79 (2007).

    Article  Google Scholar 

  27. Reddy, G.D. & Saggau, P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J. Biomed. Opt. 10, 064038 (2005).

    Article  Google Scholar 

  28. Iyer, V., Losavio, B.E. & Saggau, P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt. 8, 460–471 (2003).

    Article  Google Scholar 

  29. Zeng, S. et al. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Opt. Lett. 31, 1091–1093 (2006).

    Article  Google Scholar 

  30. Vucinic, D. & Sejnowski, T.J. A compact multiphoton 3D imaging system for recording fast neuronal activity. PLoS. ONE 2, e699 (2007).

    Article  Google Scholar 

  31. Bullen, A., Patel, S.S. & Saggau, P. High-speed, random-access fluorescence microscopy. I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997).

    Article  CAS  Google Scholar 

  32. Bullen, A. & Saggau, P. High-speed, random-access fluorescence microscopy. II. Fast quantitative measurements with voltage-sensitive dyes. Biophys. J. 76, 2272–2287 (1999).

    Article  CAS  Google Scholar 

  33. Shoham, S., O'Connor, D.H., Sarkisov, D.V. & Wang, S.S.H. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2, 837–843 (2005).

    Article  CAS  Google Scholar 

  34. Xu, J. & Stroud, R. Acousto-optic Devices: Principles, Design and Applications (John Wiley and Sons, New York, 1992).

    Google Scholar 

  35. Gottlieb, M., Ireland, C.R.E. & Ley, J.M. Electro-Optic and Acousto-Optic Scanning and Deflection (Marcel Dekker, New York, 1983).

    Google Scholar 

  36. Kaplan, A., Friedman, N. & Davidson, N. Acousto-optic lens with very fast focus scanning. Opt. Lett. 26, 1078–1080 (2001).

    Article  CAS  Google Scholar 

  37. Siegman, A.E. Lasers (University Science Books, Sausalito, California, 1986).

    Google Scholar 

  38. Xu, J., Weverka, R.T. & Wagner, K.H. Wide angular–aperture acousto-optic devices. Proc. Soc. Photo. Opt. Instrum. Eng. 2754, 104–114 (1996).

    Google Scholar 

  39. Chang, I.C. Acousto-optic modulator with wide bandwidth and large angular aperture. Electron. Lett. 30, 1190–1191 (1994).

    Article  Google Scholar 

  40. Sheppard, C.J.R. & Gu, M. Aberration compensation in confocal microscopy. Appl. Opt. 30, 3563–3568 (1991).

    Article  CAS  Google Scholar 

  41. Kam, Z., Agard, D.A. & Sedat, J.W. Three-dimensional microscopy in thick biological samples: a fresh approach for adjusting focus and correcting spherical aberration. Bioimaging 5, 40–49 (1997).

    Article  Google Scholar 

  42. Escobar, I., Saavedra, G., Martinez-Corral, M. & Lancis, J. Reduction of the spherical aberration effect in high numerical-aperture optical scanning instruments. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 3150–3155 (2006).

    Article  Google Scholar 

  43. Koester, H.J., Baur, D., Uhl, R. & Hell, S.W. Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys. J. 77, 2226–2236 (1999).

    Article  CAS  Google Scholar 

  44. Hopt, A. & Neher, E. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 80, 2029–2036 (2001).

    Article  CAS  Google Scholar 

  45. McConnell, G. Improving the penetration depth in multiphoton excitation laser scanning microscopy. J. Biomed. Opt. 11, 54020 (2006).

    Article  CAS  Google Scholar 

  46. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  47. Treacy, E.B. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5, 454–458 (1969).

    Article  Google Scholar 

  48. Mogilevtsev, D., Birks, T.A. & Russell, P.S. Group-velocity dispersion in photonic crystal fibers. Opt. Lett. 23, 1662–1664 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Liang for his contributions to the neurophysiology experiments. This project was supported by grants from the US National Institutes of Health and the National Science Foundation to P.S.

Author information

Authors and Affiliations

Authors

Contributions

G.D.R. designed the microscope, performed the initial experiments and wrote the manuscript. K.K. carried out the neurophysiological experiments and R.F. designed the software. P.S. Conceived the three-dimensional scanning and supervised the project.

Corresponding author

Correspondence to Peter Saggau.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duemani Reddy, G., Kelleher, K., Fink, R. et al. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11, 713–720 (2008). https://doi.org/10.1038/nn.2116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing