Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-catenin–mediated Wnt signaling regulates neurogenesis in the ventral telencephalon

Abstract

Development of the telencephalon involves the coordinated growth of diversely patterned brain structures. Previous studies have demonstrated the importance of β-catenin–mediated Wnt signaling in proliferation and fate determination during cerebral cortical development. We found that β-catenin–mediated Wnt signaling critically maintained progenitor proliferation in the subcortical (pallidal) telencephalon. Targeted deletion of β-catenin in mice severely impaired proliferation in the medial ganglionic eminence without grossly altering differentiated fate. Several lines of evidence suggest that this phenotype is primarily the result of a loss of canonical Wnt signaling. As previous studies have suggested that the ventral patterning factor Sonic Hedgehog (Shh) also stimulates dorsal telencephalic proliferation, we propose a model whereby Wnt and Shh signaling promote distinct dorsal-ventral patterning while also having broader effects on proliferation that serve to coordinate the growth of telencephalic subregions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of β-catenin expression in the ventral pallidum impairs growth of the MGE.
Figure 2: Deletion of β-catenin in MGE progenitors causes decreased proliferation and precocious neuronal differentiation.
Figure 3: Loss of β-catenin expression in MGE progenitors reduces the detection of Nkx2.1-lineage cells at E19.
Figure 4: Canonical Wnt activity is present in the ventral telencephalon.
Figure 5: Canonical Wnt activity is reduced in the MGE of Nkx2.1-cre; Ctnnb1loxP/loxP mutants.
Figure 6: Inhibition of β-catenin–mediated Tcf activation downregulates proliferation in MGE progenitors.
Figure 7: Inhibition of Wnt signaling suppresses proliferation of MGE progenitors.

Similar content being viewed by others

References

  1. Guillemot, F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr. Opin. Cell Biol. 17, 639–647 (2005).

    CAS  PubMed  Google Scholar 

  2. Dahmane, N. et al. The Sonic Hedgehog–Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201–5212 (2001).

    CAS  PubMed  Google Scholar 

  3. Fuccillo, M., Joyner, A.L. & Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signaling in vertebrate neural development. Nat. Rev. Neurosci. 7, 772–783 (2006).

    CAS  PubMed  Google Scholar 

  4. Gutin, G. et al. FGF signaling generates ventral telencephalic cells independently of SHH. Development 133, 2937–2946 (2006).

    CAS  PubMed  Google Scholar 

  5. Gregg, C. & Weiss, S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development 132, 565–578 (2005).

    CAS  PubMed  Google Scholar 

  6. Machon, O., van den Bout, C.J., Backman, M., Kemler, R. & Krauss, S. Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122, 129–143 (2003).

    CAS  PubMed  Google Scholar 

  7. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    CAS  PubMed  Google Scholar 

  8. Xu, Q., Wonders, C.P. & Anderson, S.A. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development 132, 4987–4998 (2005).

    CAS  PubMed  Google Scholar 

  9. Britto, J., Tannahill, D. & Keynes, R. A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat. Neurosci. 5, 103–110 (2002).

    CAS  PubMed  Google Scholar 

  10. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    CAS  PubMed  Google Scholar 

  11. Gulacsi, A. & Lillien, L. Sonic hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro . J. Neurosci. 23, 9862–9872 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Komada, M. et al. Hedgehog signaling is involved in development of the neocortex. Development 135, 2717–2727 (2008).

    CAS  PubMed  Google Scholar 

  13. Viti, J., Gulacsi, A. & Lillien, L. Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J. Neurosci. 23, 5919–5927 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Woodhead, G.J., Mutch, C.A., Olson, E.C. & Chenn, A. Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J. Neurosci. 26, 12620–12630 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, C.J., Borello, U., Rubenstein, J.L. & Pleasure, S.J. Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience 142, 1119–1131 (2006).

    CAS  PubMed  Google Scholar 

  16. Behrens, J. et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    CAS  PubMed  Google Scholar 

  17. Chenn, A. & Walsh, C.A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  18. Zechner, D. et al. beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    CAS  PubMed  Google Scholar 

  19. Zhou, C.J., Zhao, C. & Pleasure, S.J. Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J. Neurosci. 24, 121–126 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Backman, M. et al. Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev. Biol. 279, 155–168 (2005).

    CAS  PubMed  Google Scholar 

  21. Megason, S.G. & McMahon, A.P. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087–2098 (2002).

    CAS  PubMed  Google Scholar 

  22. Junghans, D., Hack, I., Frotscher, M., Taylor, V. & Kemler, R. Beta-catenin–mediated cell-adhesion is vital for embryonic forebrain development. Dev. Dyn. 233, 528–539 (2005).

    CAS  PubMed  Google Scholar 

  23. Xu, Q., Tam, M. & Anderson, S.A. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J. Comp. Neurol. 506, 16–29 (2008).

    CAS  PubMed  Google Scholar 

  24. Brault, V. et al. Inactivation of the beta-catenin gene by Wnt1-Cre–mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  25. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J.L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  26. Marin, O., Anderson, S.A. & Rubenstein, J.L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chenn, A., Zhang, Y.A., Chang, B.T. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).

    CAS  Google Scholar 

  28. Hirabayashi, Y. et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791–2801 (2004).

    CAS  PubMed  Google Scholar 

  29. Solberg, N., Machon, O. & Krauss, S. Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool. Dev. Dyn. 237, 1799–1811 (2008).

    CAS  PubMed  Google Scholar 

  30. Lei, Q. et al. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic shh-gli signaling in the neural tube. Dev. Cell 11, 325–337 (2006).

    CAS  PubMed  Google Scholar 

  31. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    CAS  PubMed  Google Scholar 

  32. Grigoriou, M., Tucker, A.S., Sharpe, P.T. & Pachnis, V. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125, 2063–2074 (1998).

    CAS  PubMed  Google Scholar 

  33. Du, T., Xu, Q., Ocbina, P.J. & Anderson, S.A. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development 135, 1559–1567 (2008).

    CAS  PubMed  Google Scholar 

  34. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  35. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    CAS  PubMed  Google Scholar 

  36. Anderson, S.A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J.L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  37. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J.L. & Anderson, S.A. Origins of cortical interneuron subtypes. J. Neurosci. 24, 2612–2622 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mohamed, O.A., Clarke, H.J. & Dufort, D. Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev. Dyn. 231, 416–424 (2004).

    CAS  PubMed  Google Scholar 

  39. Hsieh, J.C., Rattner, A., Smallwood, P.M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. USA 96, 3546–3551 (1999).

    CAS  PubMed  Google Scholar 

  40. Grove, E.A., Tole, S., Limon, J., Yip, L. & Ragsdale, C.W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  41. Parr, B.A. & McMahon, A.P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353 (1995).

    CAS  PubMed  Google Scholar 

  42. Shu, W., Jiang, Y.Q., Lu, M.M. & Morrisey, E.E. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129, 4831–4842 (2002).

    CAS  PubMed  Google Scholar 

  43. Lien, W.H., Klezovitch, O., Fernandez, T.E., Delrow, J. & Vasioukhin, V. αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311, 1609–1612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kadowaki, M. et al. N-cadherin mediates cortical organization in the mouse brain. Dev. Biol. 304, 22–33 (2007).

    CAS  PubMed  Google Scholar 

  45. Rasin, M.R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat. Neurosci. 10, 819–827 (2007).

    CAS  PubMed  Google Scholar 

  46. Klezovitch, O., Fernandez, T.E., Tapscott, S.J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18, 559–571 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huangfu, D. et al. Hedgehog signaling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    CAS  PubMed  Google Scholar 

  48. Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.P. Matise for helpful discussions and Q. Xu (Nkx2.1Cre), D. Dufort (Tcf-LacZ), R. Kemler (β-catenin Jackson Laboratory), K. Campbell (Dlx5/6Cre) and E. Morrisey (Wnt7b-lacZ embryos) for providing mice. We thank M.P. Matise (Tcf4 riboprobe), O. Marin (Nkx5.1 riboprobe) and S. Pleasure (drLef1-gfp construct) for probes and reagents. We also thank S. LoCurto for her technical assistance. This work was supported by research grants to S.A.A. from the US National Institutes of Health (P01 NS048120 and K02MH070031).

Author information

Authors and Affiliations

Authors

Contributions

A.A.G. and S.A.A. designed the experiments; A.A.G. carried out the experiments and analyzed the data; and A.A.G. and S.A.A. wrote the paper.

Corresponding author

Correspondence to Stewart A Anderson.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 4271 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulacsi, A., Anderson, S. β-catenin–mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat Neurosci 11, 1383–1391 (2008). https://doi.org/10.1038/nn.2226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing