Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa

Abstract

Retinitis pigmentosa is an incurable retinal disease that leads to blindness. One puzzling aspect concerns the progression of the disease. Although most mutations that cause retinitis pigmentosa are in rod photoreceptor–specific genes, cone photoreceptors also die as a result of such mutations. To understand the mechanism of non-autonomous cone death, we analyzed four mouse models harboring mutations in rod-specific genes. We found changes in the insulin/mammalian target of rapamycin pathway that coincided with the activation of autophagy during the period of cone death. We increased or decreased the insulin level and measured the survival of cones in one of the models. Mice that were treated systemically with insulin had prolonged cone survival, whereas depletion of endogenous insulin had the opposite effect. These data suggest that the non-autonomous cone death in retinitis pigmentosa could, at least in part, be a result of the starvation of cones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rod death kinetics in the Rho−/− mouse.
Figure 2: Cone death kinetics.
Figure 3: Summary of rod and cone death kinetics.
Figure 4: Affymetrix microarray analysis.
Figure 5: P-mTOR in wild-type and degenerating retinae.
Figure 6: Upregulation of Hif-1α and GLUT1 in cones.
Figure 7: Increased levels of LAMP-2 at the lysosomal membrane.
Figure 8: Insulin levels affect cone survival.

Similar content being viewed by others

References

  1. Steinberg, R.H. Survival factors in retinal degenerations. Curr. Opin. Neurobiol. 4, 515–524 (1994).

    Article  CAS  Google Scholar 

  2. Mohand-Said, S. et al. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc. Natl. Acad. Sci. USA 95, 8357–8362 (1998).

    Article  CAS  Google Scholar 

  3. Streichert, L.C., Birnbach, C.D. & Reh, T.A. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. J. Neurobiol. 39, 475–490 (1999).

    Article  CAS  Google Scholar 

  4. Mohand-Said, S. et al. Photoreceptor transplants increase host cone survival in the retinal degeneration (rd) mouse. Ophthalmic Res. 29, 290–297 (1997).

    Article  CAS  Google Scholar 

  5. Mohand-Said, S., Hicks, D., Dreyfus, H. & Sahel, J.A. Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Arch. Ophthalmol. 118, 807–811 (2000).

    Article  CAS  Google Scholar 

  6. Leveillard, T. et al. Identification and characterization of rod-derived cone viability factor. Nat. Genet. 36, 755–759 (2004).

    Article  CAS  Google Scholar 

  7. Gupta, N., Brown, K.E. & Milam, A.H. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration and age-related macular degeneration. Exp. Eye Res. 76, 463–471 (2003).

    Article  CAS  Google Scholar 

  8. Komeima, K., Rogers, B.S., Lu, L. & Campochiaro, P.A. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 103, 11300–11305 (2006).

    Article  CAS  Google Scholar 

  9. Komeima, K., Rogers, B.S. & Campochiaro, P.A. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. J. Cell Physiol. 213, 809–815 (2007).

    Article  CAS  Google Scholar 

  10. Yu, D.Y. & Cringle, S.J. Retinal degeneration and local oxygen metabolism. Exp. Eye Res. 80, 745–751 (2005).

    Article  CAS  Google Scholar 

  11. Bowes, C. et al. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347, 677–680 (1990).

    Article  CAS  Google Scholar 

  12. Tsang, S.H. et al. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 272, 1026–1029 (1996).

    Article  CAS  Google Scholar 

  13. Lem, J. et al. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc. Natl. Acad. Sci. USA 96, 736–741 (1999).

    Article  CAS  Google Scholar 

  14. Naash, M.I., Hollyfield, J.G., al-Ubaidi, M.R. & Baehr, W. Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc. Natl. Acad. Sci. USA 90, 5499–5503 (1993).

    Article  CAS  Google Scholar 

  15. Applebury, M.L. et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000).

    Article  CAS  Google Scholar 

  16. John, S.K., Smith, J.E., Aguirre, G.D. & Milam, A.H. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa. Mol. Vis. 6, 204–215 (2000).

    CAS  PubMed  Google Scholar 

  17. Reiling, J.H. & Sabatini, D.M. Stress and mTORture signaling. Oncogene 25, 6373–6383 (2006).

    Article  CAS  Google Scholar 

  18. Dekanty, A., Lavista-Llanos, S., Irisarri, M., Oldham, S. & Wappner, P. The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-alpha/Sima. J. Cell Sci. 118, 5431–5441 (2005).

    Article  CAS  Google Scholar 

  19. Hudson, C.C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  Google Scholar 

  20. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G.L. & Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin–dependent signaling pathway. J. Biol. Chem. 277, 27975–27981 (2002).

    Article  CAS  Google Scholar 

  21. Zhong, H. et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  22. Thomas, G.V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med. 12, 122–127 (2006).

    Article  CAS  Google Scholar 

  23. Wang, G.L., Jiang, B.H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510–5514 (1995).

    Article  CAS  Google Scholar 

  24. Ebert, B.L., Firth, J.D. & Ratcliffe, P.J. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter 1 via distinct Cis-acting sequences. J. Biol. Chem. 270, 29083–29089 (1995).

    Article  CAS  Google Scholar 

  25. Massey, A., Kiffin, R. & Cuervo, A.M. Pathophysiology of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 36, 2420–2434 (2004).

    Article  CAS  Google Scholar 

  26. Finn, P.F. & Dice, J.F. Proteolytic and lipolytic responses to starvation. Nutrition 22, 830–844 (2006).

    Article  CAS  Google Scholar 

  27. Codogno, P. & Meijer, A.J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 Suppl 2: 1509–1518 (2005).

    Article  CAS  Google Scholar 

  28. Dice, J.F. Chaperone-mediated autophagy. Autophagy 3, 295–299 (2007).

    Article  CAS  Google Scholar 

  29. Kunchithapautham, K. & Rohrer, B. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3, 433–441 (2007).

    Article  CAS  Google Scholar 

  30. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  31. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  Google Scholar 

  32. Punzo, C. & Cepko, C.L. Ultrasound-guided in utero injections allow studies of the development and function of the eye. Dev. Dyn. 237, 1034–1042 (2008).

    Article  CAS  Google Scholar 

  33. Cuervo, A.M. & Dice, J.F. Regulation of lamp2a levels in the lysosomal membrane. Traffic 1, 570–583 (2000).

    Article  CAS  Google Scholar 

  34. Kiffin, R., Christian, C., Knecht, E. & Cuervo, A.M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 15, 4829–4840 (2004).

    Article  CAS  Google Scholar 

  35. Cuervo, A.M. & Dice, J.F. Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 113, 4441–4450 (2000).

    CAS  PubMed  Google Scholar 

  36. Corrochano, S. et al. Attenuation of vision loss and delay in apoptosis of photoreceptors induced by proinsulin in a mouse model of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 49, 4188–4194 (2008).

    Article  Google Scholar 

  37. Poitry-Yamate, C.L., Poitry, S. & Tsacopoulos, M. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15, 5179–5191 (1995).

    Article  CAS  Google Scholar 

  38. Tsacopoulos, M., Poitry-Yamate, C.L., MacLeish, P.R. & Poitry, S. Trafficking of molecules and metabolic signals in the retina. Prog. Retin. Eye Res. 17, 429–442 (1998).

    Article  CAS  Google Scholar 

  39. Snodderly, D.M., Sandstrom, M.M., Leung, I.Y., Zucker, C.L. & Neuringer, M. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 43, 2815–2818 (2002).

    PubMed  Google Scholar 

  40. Young, R.W. The renewal of rod and cone outer segments in the rhesus monkey. J. Cell Biol. 49, 303–318 (1971).

    Article  CAS  Google Scholar 

  41. Biel, M. et al. Selective loss of cone function in mice lacking the cyclic nucleotide–gated channel CNG3. Proc. Natl. Acad. Sci. USA 96, 7553–7557 (1999).

    Article  CAS  Google Scholar 

  42. Yang, R.B. et al. Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J. Neurosci. 19, 5889–5897 (1999).

    Article  CAS  Google Scholar 

  43. Stearns, G., Evangelista, M., Fadool, J.M. & Brockerhoff, S.E. A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J. Neurosci. 27, 13866–13874 (2007).

    Article  CAS  Google Scholar 

  44. Gouras, P., Kjeldbye, H. & Zack, D.J. Reporter gene expression in cones in transgenic mice carrying bovine rhodopsin promoter/LacZ transgenes. Vis. Neurosci. 11, 1227–1231 (1994).

    Article  CAS  Google Scholar 

  45. Woodford, B.J., Chen, J. & Simon, M.I. Expression of rhodopsin promoter transgene product in both rods and cones. Exp. Eye Res. 58, 631–635 (1994).

    Article  CAS  Google Scholar 

  46. al-Ubaidi, M.R. et al. Mouse opsin. Gene structure and molecular basis of multiple transcripts. J. Biol. Chem. 265, 20563–20569 (1990).

    CAS  PubMed  Google Scholar 

  47. Wang, Y. et al. A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429–440 (1992).

    Article  CAS  Google Scholar 

  48. Punzo, C. & Cepko, C. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 48, 849–857 (2007).

    Article  Google Scholar 

  49. Harding, E.F. An efficient, minimal-storage procedure for calculating the Mann-Whitney U, generalized U and similar distributions. Appl. Stat. 33, 1–6 (1984).

    Article  Google Scholar 

  50. Molday, R.S. & MacKenzie, D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity and application as structural probes. Biochemistry 22, 653–660 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Nathans for the cone-lacZ mouse line and the blue-cone opsin antibody. We are grateful to S. Tsang, M. Naash and J. Lem for the Pde6b−/−, P23H and Rho−/− mice, respectively. The LAMP-2 antibody, developed by B. Granger, was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the US National Institute of Child Health and Human Development and maintained by the University of Iowa. We thank J. Trimarchi, R. Kanadia, N. Perrimon, J. Zirin, M. Feany and C. Tabin for critical reading of the manuscript. This work was supported by the US National Institutes of Health (RO1 EY014466), Macular Vision Research Foundation, Foundation for Retinal Research, Howard Hughes Medical Institute, Merck and by an EMBO fellowship to C.P.

Author information

Authors and Affiliations

Authors

Contributions

C.P. conducted the experiments and wrote the manuscript. K.K. performed computational microarray analysis. C.L.C. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Constance L Cepko.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Table 1 (PDF 1906 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punzo, C., Kornacker, K. & Cepko, C. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12, 44–52 (2009). https://doi.org/10.1038/nn.2234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing