Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis

Abstract

The floor plate, an essential ventral midline organizing center that produces the morphogen Shh, has distinct properties along the neuraxis. The neurogenic potential of the floor plate and its underlying mechanisms remain unknown. Using Shh as a driver for lineage analysis, we found that the mouse midbrain, but not the hindbrain, floor plate is neurogenic, giving rise to dopamine (DA) neurons. Distinct spatiotemporal Shh and Wnt expression may distinguish the neurogenetic potential of these structures. We discovered an inhibitory role for Shh: removal of Shh resulted in neurogenesis from the hindbrain midline and, conversely, high doses of Shh inhibited proliferation and DA neuron production in midbrain cultures. We found that Wnt/beta-catenin signaling is necessary and sufficient for antagonizing Shh, DA progenitor marker induction and promotion of dopaminergic neurogenesis. These findings demonstrate how the dynamic interplay of canonical Wnt/beta-catenin signaling and Shh may orchestrate floor plate neurogenesis or a lack thereof.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Midline Shh expression inversely correlates with neurogenesis.
Figure 2: Hindbrain midline neurogenesis in Shh::cre;Shh cKO embryos.
Figure 3: Reduced Shh correlates with increased proliferation and Ngn2 expression.
Figure 4: Reduction of dopaminergic neurons results from defective midbrain floor plate neurogenesis in Shh::cre;Ctnnb1 cKO embryos.
Figure 5: Canonical Wnt/beta-catenin signaling is required for Otx2 and Lmx1a, but not Lmx1b and Foxa2, maintenance.
Figure 6: Canonical Wnt/beta-catenin signaling is sufficient to repress Shh and induce a DA progenitor profile.

Similar content being viewed by others

References

  1. Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230–240 (2005).

    Article  CAS  Google Scholar 

  2. Fuccillo, M., Joyner, A.L. & Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signaling in vertebrate neural development. Nat. Rev. Neurosci. 7, 772–783 (2006).

    Article  CAS  Google Scholar 

  3. Kittappa, R., Chang, W.W., Awatramani, R.B. & McKay, R.D. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol. 5, e325 (2007).

    Article  Google Scholar 

  4. Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 3213–3225 (2007).

    Article  CAS  Google Scholar 

  5. Bonilla, S. et al. Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia 56, 809–820 (2008).

    Article  Google Scholar 

  6. Harfe, B.D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004).

    Article  CAS  Google Scholar 

  7. Patten, I., Kulesa, P., Shen, M.M., Fraser, S. & Placzek, M. Distinct modes of floor plate induction in the chick embryo. Development 130, 4809–4821 (2003).

    Article  CAS  Google Scholar 

  8. Epstein, D.J., McMahon, A.P. & Joyner, A.L. Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and Hnf3-independent mechanisms. Development 126, 281–292 (1999).

    CAS  PubMed  Google Scholar 

  9. Scherz, P.J., McGlinn, E., Nissim, S. & Tabin, C.J. Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev. Biol. 308, 343–354 (2007).

    Article  CAS  Google Scholar 

  10. Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  Google Scholar 

  11. Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133, 495–505 (2006).

    Article  CAS  Google Scholar 

  12. Andersson, E., Jensen, J.B., Parmar, M., Guillemot, F. & Bjorklund, A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133, 507–516 (2006).

    Article  CAS  Google Scholar 

  13. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  Google Scholar 

  14. Geng, X. et al. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev. Cell 15, 236–247 (2008).

    Article  CAS  Google Scholar 

  15. Echelard, Y., Vassileva, G. & McMahon, A.P. Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120, 2213–2224 (1994).

    CAS  PubMed  Google Scholar 

  16. Zervas, M., Millet, S., Ahn, S. & Joyner, A.L. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43, 345–357 (2004).

    Article  CAS  Google Scholar 

  17. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133, 89–98 (2006).

    Article  CAS  Google Scholar 

  18. Castelo-Branco, G. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a and Wnt-5a. Proc. Natl. Acad. Sci. USA 100, 12747–12752 (2003).

    Article  CAS  Google Scholar 

  19. McMahon, A.P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  20. Blaess, S., Corrales, J.D. & Joyner, A.L. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development 133, 1799–1809 (2006).

    Article  CAS  Google Scholar 

  21. Wrobel, C.N., Mutch, C.A., Swaminathan, S., Taketo, M.M. & Chenn, A. Persistent expression of stabilized beta-catenin delays maturation of radial glial cells into intermediate progenitors. Dev. Biol. 309, 285–297 (2007).

    Article  CAS  Google Scholar 

  22. Hynes, M. et al. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15, 35–44 (1995).

    Article  CAS  Google Scholar 

  23. Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393–405 (2006).

    Article  CAS  Google Scholar 

  24. Bayly, R.D., Ngo, M., Aglyamova, G.V. & Agarwala, S. Regulation of ventral midbrain patterning by Hedgehog signaling. Development 134, 2115–2124 (2007).

    Article  CAS  Google Scholar 

  25. Manning, L. et al. Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev. Cell 11, 873–885 (2006).

    Article  CAS  Google Scholar 

  26. Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    Article  CAS  Google Scholar 

  27. Ahn, S. & Joyner, A.L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118, 505–516 (2004).

    Article  CAS  Google Scholar 

  28. Alvarez-Medina, R., Cayuso, J., Okubo, T., Takada, S. & Marti, E. Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 135, 237–247 (2008).

    Article  CAS  Google Scholar 

  29. Lei, Q. et al. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev. Cell 11, 325–337 (2006).

    Article  CAS  Google Scholar 

  30. Lagutin, O.V. et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003).

    Article  CAS  Google Scholar 

  31. McKay, R. & Kittappa, R. Will stem cell biology generate new therapies for Parkinson's disease? Neuron 58, 659–661 (2008).

    Article  CAS  Google Scholar 

  32. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  33. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  Google Scholar 

  34. Brault, V. et al. Inactivation of the beta-catenin gene by Wnt1-Cre–mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  35. Lewis, P.M. et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599–612 (2001).

    Article  CAS  Google Scholar 

  36. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J.J. & Dymecki, S.M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    Article  CAS  Google Scholar 

  37. Farago, A.F., Awatramani, R.B. & Dymecki, S.M. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50, 205–218 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Tabin for Shh::cre mice and Shh cDNA; M. German for antibody to Lmx1a; T. Muller and C. Birchmeier for antibody to Lmx1b; D. Anderson for antibody to Ngn2; T. Edlund for antibodies to Gbx2; and A. Klar for the Spon1l cDNA. We thank A. Chenn for supplying Ctnnb1 mouse strains. We thank J. Kessler for suggestions. R.B.A was supported by the Dana Foundation and the American Parkinson's Disease Association. M.J. was supported by the Parkinson's Disease Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.J. designed and conducted the experiments, prepared all of the figures and participated in writing the manuscript. B.A.Y. and A.M.A. helped to characterize various conditional mutants. R.K., W.W.C. and R.D.G.M. performed the in vitro analyses and provided useful discussions. M.M.T. provided the stabilized Ctnnb1 strain. R.B.A. supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Rajeshwar B Awatramani.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1063 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joksimovic, M., Yun, B., Kittappa, R. et al. Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 12, 125–131 (2009). https://doi.org/10.1038/nn.2243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing