Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endoplasmic reticulum stress in disorders of myelinating cells

Abstract

Myelinating cells, oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system produce an enormous amount of plasma membrane during the myelination process, making them particularly susceptible to disruptions of the secretory pathway. Endoplasmic reticulum stress, initiated by the accumulation of unfolded or misfolded proteins, activates the unfolded protein response, which adapts cells to the stress. If this adaptive response is insufficient, the unfolded protein response activates an apoptotic program to eliminate the affected cells. Recent observations suggest that endoplasmic reticulum stress in myelinating cells is important in the pathogenesis of various disorders of myelin, including Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease and Vanishing White Matter Disease, as well as in the most common myelin disorder, multiple sclerosis. A better understanding of endoplasmic reticulum stress in myelinating cells has laid the groundwork for the design of new therapeutic strategies for promoting myelinating cell survival in these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligodendrocyte and myelin.
Figure 2: The UPR pathway in eukaryotic cells.

Similar content being viewed by others

References

  1. Pfeiffer, S.E., Warrington, A.E. & Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191–197 (1993).

    CAS  PubMed  Google Scholar 

  2. Anitei, M. & Pfeiffer, S.E. Myelin biogenesis: sorting out protein trafficking. Curr. Biol. 16, R418–R421 (2006).

    CAS  PubMed  Google Scholar 

  3. Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17, 533–540 (2007).

    CAS  PubMed  Google Scholar 

  4. Wrabetz, L. et al. Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J. Neurosci. 26, 2358–2368 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pennuto, M. et al. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57, 393–405 (2008). This paper shows that the UPR is involved in the demyelination process in Charcot-Marie-Tooth 1B mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bauer, J. et al. Endoplasmic reticulum stress in PLP-overexpressing transgenic rats: gray matter oligodendrocytes are more vulnerable than white matter oligodendrocytes. J. Neuropathol. Exp. Neurol. 61, 12–22 (2002).

    PubMed  Google Scholar 

  7. Southwood, C.M., Garbern, J., Jiang, W. & Gow, A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36, 585–596 (2002). This paper shows that oligodendrocyte apoptosis in PMD is mediated by the UPR.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Voorn, J.P. et al. The unfolded protein response in vanishing white matter disease. J. Neuropathol. Exp. Neurol. 64, 770–775 (2005).

    CAS  PubMed  Google Scholar 

  9. van Kollenburg, B. et al. Glia-specific activation of all pathways of the unfolded protein response in vanishing white matter disease. J. Neuropathol. Exp. Neurol. 65, 707–715 (2006).

    CAS  PubMed  Google Scholar 

  10. Mháille, A.N. et al. Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 67, 200–211 (2008). This is the first study to show elevated levels of endoplasmic reticulum stress markers in multiple sclerosis demyelinated lesions.

    PubMed  Google Scholar 

  11. Lees, J.R. & Cross, A.H. A little stress is good: IFN-gamma, demyelination, and multiple sclerosis. J. Clin. Invest. 117, 297–299 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaufman, R.J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 (1999).

    CAS  PubMed  Google Scholar 

  13. Schröder, M. Endoplasmic reticulum stress responses. Cell. Mol. Life Sci. 65, 862–894 (2008).

    PubMed  Google Scholar 

  14. Ma, Y. & Hendershot, L.M. The unfolding tale of the unfolded protein response. Cell 107, 827–830 (2001).

    CAS  PubMed  Google Scholar 

  15. Rutkowski, D.T. & Kaufman, R.J. A trip to the ER: coping with stress. Trends Cell Biol. 14, 20–28 (2004).

    CAS  PubMed  Google Scholar 

  16. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  17. Ron, D. & Harding, H. PERK and translational control by stress in the endoplasmic reticulum. in Translational Control (eds. Hershey, J., Mathews M., & Sonenberg, N.) 547–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000).

    Google Scholar 

  18. Schröder, M. & Kaufman, R.J. Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr. Mol. Med. 6, 5–36 (2006).

    PubMed  Google Scholar 

  19. Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    CAS  PubMed  Google Scholar 

  20. Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    CAS  PubMed  Google Scholar 

  21. Harding, H.P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  22. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    CAS  PubMed  Google Scholar 

  23. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    CAS  PubMed  Google Scholar 

  24. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    CAS  PubMed  Google Scholar 

  25. Marciniak, S.J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    CAS  PubMed  Google Scholar 

  26. Szegezdi, E., Logue, S.E., Gorman, A.M. & Samali, A. Mediators of endoplasmic reticulum stress–induced apoptosis. EMBO Rep. 7, 880–885 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Faitova, J., Krekac, D., Hrstka, R. & Vojtesek, B. Endoplasmic reticulum stress and apoptosis. Cell. Mol. Biol. Lett. 11, 488–505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Scheuner, D. & Kaufman, R.J. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev. 29, 317–333 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ji, C. Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury. J. Gastroenterol. Hepatol. 23, S16–S24 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Todd, D.J., Lee, A.H. & Glimcher, L.H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8, 663–674 (2008).

    CAS  PubMed  Google Scholar 

  31. Skre, H. Genetic and clinical aspects of Charcot-Marie-Tooth's disease. Clin. Genet. 6, 98–118 (1974).

    CAS  PubMed  Google Scholar 

  32. Berger, P., Niemann, A. & Suter, U. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54, 243–257 (2006).

    PubMed  Google Scholar 

  33. Oyadomari, S. & Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381–389 (2004).

    CAS  PubMed  Google Scholar 

  34. Marciniak, S.J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lupski, J.R. & Chance, P.F. Hereditary motor and sensory neuropathies involving altered dosage or mutation of PMP22: the CMT1A duplication and HNPP deletion. in Peripheral Neuropathy (eds. Dyck, P.J. & Thomas, P.K.) 1659–1680 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  36. Sereda, M.W. & Nave, K.A. Animal models of Charcot-Marie-Tooth disease type 1A. Neuromolecular Med. 8, 205–216 (2006).

    CAS  PubMed  Google Scholar 

  37. Snipes, G.J., Orfali, W., Fraser, A., Dickson, K. & Colby, J. The anatomy and cell biology of peripheral myelin protein-22. Ann. NY Acad. Sci. 883, 143–151 (1999).

    CAS  PubMed  Google Scholar 

  38. Colby, J. et al. PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol. Dis. 7, 561–573 (2000).

    CAS  PubMed  Google Scholar 

  39. Dickson, K.M. et al. Association of calnexin with mutant peripheral myelin protein-22 ex vivo: a basis for “gain-of-function” ER diseases. Proc. Natl. Acad. Sci. USA 99, 9852–9857 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Khajavi, M. et al. Oral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy. Am. J. Hum. Genet. 81, 438–453 (2007). This report demonstrates the therapeutic benefit of facilitated endoplasmic reticulum export in a CMT animal model.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Garbern, J.Y. Pelizaeus-Merzbacher disease: Genetic and cellular pathogenesis. Cell. Mol. Life Sci. 64, 50–65 (2007).

    CAS  PubMed  Google Scholar 

  42. Southwood, C. & Gow, A. Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microsc. Res. Tech. 52, 700–708 (2001).

    CAS  PubMed  Google Scholar 

  43. Gow, A. & Lazzarini, R.A. A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease. Nat. Genet. 13, 422–428 (1996).

    CAS  PubMed  Google Scholar 

  44. Gow, A., Southwood, C.M. & Lazzarini, R.A. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. J. Cell Biol. 140, 925–934 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Swanton, E., Holland, A., High, S. & Woodman, P. Disease-associated mutations cause premature oligomerization of myelin proteolipid protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 4342–4347 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dhaunchak, A.S. & Nave, K.A. A common mechanism of PLP/DM20 misfolding causes cysteine-mediated endoplasmic reticulum retention in oligodendrocytes and Pelizaeus-Merzbacher disease. Proc. Natl. Acad. Sci. USA 104, 17813–17818 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Koeppen, A.H., Barron, K.D., Csiza, C.K. & Greenfield, E.A. Comparative immunocytochemistry of Pelizaeus-Merzbacher disease, the jimpy mouse and the myelin-deficient rat. J. Neurol. Sci. 84, 315–327 (1988).

    CAS  PubMed  Google Scholar 

  48. Roussel, G., Neskovic, N.M., Trifilieff, E., Artault, J.C. & Nussbaum, J.L. Arrest of proteolipid transport through the Golgi apparatus in Jimpy brain. J. Neurocytol. 16, 195–204 (1987).

    CAS  PubMed  Google Scholar 

  49. McLaughlin, M. et al. Genetic background influences UPR, but not PLP, processing in the rumpshaker model of PMD/SPG2. Neurochem. Res. 32, 167–176 (2007).

    CAS  PubMed  Google Scholar 

  50. Schiffmann, R. & Elroy-Stein, O. Childhood ataxia with CNS hypomyelination/vanishing white matter disease—a common leukodystrophy caused by abnormal control of protein synthesis. Mol. Genet. Metab. 88, 7–15 (2006).

    CAS  PubMed  Google Scholar 

  51. Leegwater, P.A. et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat. Genet. 29, 383–388 (2001).

    CAS  PubMed  Google Scholar 

  52. Mohammad-Qureshi, S.S., Jennings, M.D. & Pavitt, G.D. Clues to the mechanism of action of eIF2B, the guanine nucleotide exchange factor for translation initiation. Biochem. Soc. Trans. 36, 658–664 (2008).

    CAS  PubMed  Google Scholar 

  53. van der Knaap, M.S., Pronk, J.C. & Scheper, G.C. Vanishing white matter disease. Lancet Neurol. 5, 413–423 (2006).

    CAS  PubMed  Google Scholar 

  54. Wong, K. et al. Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central nervous system hypomyelination syndrome. Acta Neuropathol. 100, 635–646 (2000).

    CAS  PubMed  Google Scholar 

  55. Van Haren, K. et al. The life and death of oligodendrocytes in vanishing white matter disease. J. Neuropathol. Exp. Neurol. 63, 618–630 (2004).

    PubMed  Google Scholar 

  56. Kantor, L. et al. Heightened stress response in primary fibroblasts expressing mutant eIF2B genes from CACH/VWM leukodystrophy patients. Hum. Genet. 118, 99–106 (2005).

    PubMed  Google Scholar 

  57. Kantor, L. et al. A point mutation in translation initiation factor 2B leads to a continuous hyper stress state in oligodendroglial-derived cells. PLoS ONE 3, e3783 (2008). This paper provides evidence that the UPR adapts oligodendrocytes to eIF2B mutations in Vanishing White Matter Disease.

    PubMed  PubMed Central  Google Scholar 

  58. Frohman, E.M., Racke, M.K. & Raine, C.S. Multiple sclerosis—the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955 (2006).

    CAS  PubMed  Google Scholar 

  59. Trapp, B.D. & Nave, K.A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    CAS  PubMed  Google Scholar 

  60. Zhang, K. & Kaufman, R.J. From endoplasmic reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mycko, M.P., Papoian, R., Boschert, U., Raine, C.S. & Selmaj, K.W. Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin. Neurol. Neurosurg. 106, 223–229 (2004).

    PubMed  Google Scholar 

  62. Cwiklinska, H. et al. Heat shock protein 70 associations with myelin basic protein and proteolipid protein in multiple sclerosis brains. Int. Immunol. 15, 241–249 (2003).

    CAS  PubMed  Google Scholar 

  63. Chakrabarty, A., Danley, M.M. & LeVine, S.M. Immunohistochemical localization of phosphorylated protein kinase R and phosphorylated eukaryotic initiation factor-2 alpha in the central nervous system of SJL mice with experimental allergic encephalomyelitis. J. Neurosci. Res. 76, 822–833 (2004).

    CAS  PubMed  Google Scholar 

  64. Chakrabarty, A., Fleming, K.K., Marquis, J.G. & LeVine, S.M. Quantifying immunohistochemical staining of phospho-eIF2alpha, heme oxygenase-2 and NADPH cytochrome P450 reductase in oligodendrocytes during experimental autoimmune encephalomyelitis. J. Neurosci. Methods 144, 227–234 (2005).

    CAS  PubMed  Google Scholar 

  65. Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest. 117, 448–456 (2007). This paper shows the beneficial effects of the UPR in an immune-mediated demyelinating disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Imitola, J., Chitnis, T. & Khoury, S.J. Cytokines in multiple sclerosis: from bench to bedside. Pharmacol. Ther. 106, 163–177 (2005).

    CAS  PubMed  Google Scholar 

  67. Su, Q. et al. Interferons induce tyrosine phosphorylation of the eIF2alpha kinase PKR through activation of Jak1 and Tyk2. EMBO Rep. 8, 265–270 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, W., Harding, H.P., Ron, D. & Popko, B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J. Cell Biol. 169, 603–612 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bruck, W., Kuhlmann, T. & Stadelmann, C. Remyelination in multiple sclerosis. J. Neurol. Sci. 206, 181–185 (2003).

    PubMed  Google Scholar 

  70. Franklin, R.J. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002).

    CAS  PubMed  Google Scholar 

  71. Panitch, H.S., Hirsch, R.L., Schindler, J. & Johnson, K.P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    CAS  PubMed  Google Scholar 

  72. Renno, T. et al. Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol. Cell. Neurosci. 12, 376–389 (1998).

    CAS  PubMed  Google Scholar 

  73. Lin, W. et al. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 129, 1306–1318 (2006). This paper shows that endoplasmic reticulum stress induction in actively remyelinating oligodendrocytes leads to cell death and remyelination failure in an immune-mediated demyelinating diseases.

    PubMed  Google Scholar 

  74. Corbin, J.G. et al. Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis and abnormal cerebellar development. Mol. Cell. Neurosci. 7, 354–370 (1996).

    CAS  PubMed  Google Scholar 

  75. LaFerla, F.M., Sugarman, M.C., Lane, T.E. & Leissring, M.A. Regional hypomyelination and dysplasia in transgenic mice with astrocyte-directed expression of interferon-gamma. J. Mol. Neurosci. 15, 45–59 (2000).

    CAS  PubMed  Google Scholar 

  76. Lin, W. et al. Enhanced integrated stress response promotes myelinating oligodendrocyte survival in response to interferon-gamma. Am. J. Pathol. 173, 1508–1517 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Boyce, M. & Yuan, J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 13, 363–373 (2006).

    CAS  PubMed  Google Scholar 

  78. Morell, P. & Quarles, R.H. Myelin formation, structure and biochemistry. in Basic Neurochemistry: Molecular, Cellular and Medical Aspects (eds. Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K. & Uhler, M.D.) 69–93 (Lippincott-Raven Publishers, Philadelphia, 1999).

    Google Scholar 

  79. Szegezdi, E., Fitzgerald, U. & Samali, A. Caspase-12 and endoplasmic reticulum stress–mediated apoptosis: the story so far. Ann. NY Acad. Sci. 1010, 186–194 (2003).

    CAS  PubMed  Google Scholar 

  80. Nakagawa, T. et al. Caspase-12 mediates endoplasmic reticulum–specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103 (2000).

    CAS  PubMed  Google Scholar 

  81. Sharma, R. & Gow, A. Minimal role for caspase 12 in the unfolded protein response in oligodendrocytes in vivo. J. Neurochem. 101, 889–897 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sharma, R., Jiang, H., Zhong, L., Tseng, J. & Gow, A. Minimal role for activating transcription factor 3 in the oligodendrocyte unfolded protein response in vivo. J. Neurochem. 102, 1703–1712 (2007).

    CAS  PubMed  Google Scholar 

  83. Watkins, T.A., Emery, B., Mulinyawe, S. & Barres, B.A. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  85. Takano, K. et al. A dibenzoylmethane derivative protects dopaminergic neurons against both oxidative stress and endoplasmic reticulum stress. Am. J. Physiol. Cell Physiol. 293, C1884–C1894 (2007).

    CAS  PubMed  Google Scholar 

  86. Boyce, M. et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005). This paper demonstrates the potential of small molecules to protect cells from endoplasmic reticulum stress.

    CAS  PubMed  Google Scholar 

  87. Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006).

    CAS  PubMed  Google Scholar 

  88. Proud, C.G. eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3–12 (2005).

    CAS  PubMed  Google Scholar 

  89. Rutkowski, D.T. & Kaufman, R.J. All roads lead to ATF4. Dev. Cell 4, 442–444 (2003).

    CAS  PubMed  Google Scholar 

  90. Novoa, I., Zeng, H., Harding, H.P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011–1022 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Douglas for critical comments on the manuscript. W.L. is supported by a National Multiple Sclerosis Society Career Transition Fellowship grant (TA 3026-A-1). B.P. is supported by grants from the US National Institutes of Health (NS34939 and 027336) and the Myelin Repair Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Lin or Brian Popko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, W., Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nat Neurosci 12, 379–385 (2009). https://doi.org/10.1038/nn.2273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing