Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis

Abstract

In adult hippocampus, new neurons are continuously generated from neural stem cells (NSCs), but the molecular mechanisms regulating adult neurogenesis remain elusive. We found that Wnt signaling, together with the removal of Sox2, triggered the expression of NeuroD1 in mice. This transcriptional regulatory mechanism was dependent on a DNA element containing overlapping Sox2 and T-cell factor/lymphoid enhancer factor (TCF/LEF)-binding sites (Sox/LEF) in the promoter. Notably, Sox/LEF sites were also found in long interspersed nuclear element 1 (LINE-1) elements, consistent with their critical roles in the transition of NSCs to proliferating neuronal progenitors. Our results describe a previously unknown Wnt-mediated regulatory mechanism that simultaneously coordinates activation of NeuroD1 and LINE-1, which is important for adult neurogenesis and survival of neuronal progenitors. Moreover, the discovery that LINE-1 retro-elements embedded in the mammalian genome can function as bi-directional promoters suggests that Sox/LEF regulatory sites may represent a general mechanism, at least in part, for relaying environmental signals to other nearby loci to promote adult hippocampal neurogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific expression of the Neurod1 gene in early committed neurogenic cells in adult hippocampus.
Figure 2: Sox2/LEF DNA regulatory elements on the Neurod promoters.
Figure 3: Wnt signaling increases Neurod1 promoter activity during early neurogenesis.
Figure 4: Effect of Wnt signaling on the expression of NeuroD1 and LINE-1 during adult neurogenesis.
Figure 5: Adult NSC cannot transition to immature and mature granule neurons in β-catenin cKO mice.
Figure 6: Lineage tracing Sox2-positive NSCs in β-catenin cKO mice.
Figure 7: Infection of lentivirus expressing β-catenin shRNA in vivo.
Figure 8: Activity of LINE-1 as a promoter in adult rat hippocampus.

Similar content being viewed by others

References

  1. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Barkho, B.Z. et al. Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev. 15, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lie, D.C. et al. Wnt signaling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Galceran, J., Miyashita-Lin, E.M., Devaney, E., Rubenstein, J.L. & Grosschedl, R. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127, 469–482 (2000).

    CAS  PubMed  Google Scholar 

  6. Machon, O., van den Bout, C.J., Backman, M., Kemler, R. & Krauss, S. Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122, 129–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Solberg, N., Machon, O. & Krauss, S. Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus and premigratory dentate gyrus progenitor pool. Dev. Dyn. 237, 1799–1811 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wexler, E.M., Geschwind, D.H. & Palmer, T.D. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol. Psychiatry 13, 285–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Miyata, T., Maeda, T. & Lee, J.E. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 13, 1647–1652 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, M. et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl. Acad. Sci. USA 97, 865–870 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Deisseroth, K. et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F.H. Histone deacetylase inhibition–mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. USA 101, 16659–16664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 12, 1090–1092 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol. 19, 5453–5465 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferri, A.L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Collignon, J. et al. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509–520 (1996).

    CAS  PubMed  Google Scholar 

  20. Ambrosetti, D.C., Basilico, C. & Dailey, L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol. Cell. Biol. 17, 6321–6329 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bylund, M., Andersson, E., Novitch, B.G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Bani-Yaghoub, M. et al. Role of Sox2 in the development of the mouse neocortex. Dev. Biol. 295, 52–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Muotri, A.R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. D'Amour, K.A. & Gage, F.H. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc. Natl. Acad. Sci. USA 100, 11866–11872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gage, F.H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma, Q., Kintner, C. & Anderson, D.J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Farah, M.H. et al. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702 (2000).

    CAS  PubMed  Google Scholar 

  30. Guillemot, F. Vertebrate bHLH genes and the determination of neuronal fates. Exp. Cell Res. 253, 357–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hsieh, J. & Gage, F.H. Chromatin remodeling in neural development and plasticity. Curr. Opin. Cell Biol. 17, 664–671 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Brault, V. et al. Inactivation of the β-catenin gene by Wnt1-Cre–mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  33. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H.H., Jr. An important role for RUNX3 in human LINE-1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929–4940 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grove, E.A., Tole, S., Limon, J., Yip, L. & Ragsdale, C.W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  35. Lee, S.M., Tole, S., Grove, E. & McMahon, A.P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  PubMed  Google Scholar 

  36. Shimogori, T., VanSant, J., Paik, E. & Grove, E.A. Members of the Wnt, Fz and Frp gene families expressed in postnatal mouse cerebral cortex. J. Comp. Neurol. 473, 496–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, X., Arlotta, P., Macklis, J.D. & Chen, J. Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J. Neurosci. 27, 14317–14325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jessberger, S. et al. Dentate gyrus–specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn. Mem. 16, 147–154 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Praag, H., Shubert, T., Zhao, C. & Gage, F.H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muotri, A.R., Zhao, C., Marchetto, M.C.N. & Gage, F.H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus (in press).

  41. Miyoshi, H., Takahashi, M., Gage, F.H. & Verma, I.M. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94, 10319–10323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pfeifer, A., Brandon, E.P., Kootstra, N., Gage, F.H. & Verma, I.M. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc. Natl. Acad. Sci. USA 98, 11450–11455 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Ohtake for assistance with animal care and supporting our in vivo experiments. We thank M. Namihira and J. Kohyama for assistance in obtaining immunostaining data, E. Mosser for the constitutively active β-catenin construct, and G. Canettieri and M. Montminy for HDAC1. We thank A. Huynh for help with immunohistochemical analysis. We are grateful for the technical assistance of B. Miller and to M.L. Gage for editorial comments. T.K., M.W. and M.A. were supported by various grants from National Institute of Advanced Industrial Science and Technology. T.K. was partly supported by the Grant-in-Aid for Exploratory Research. F.H.G. was supported by grants from the US National Institutes of Health (MH082070) and the G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.K., J.H., A.M., K.N. and F.H.G. conceptualized and designed the study. T.K., J.H., A.M. and F.H.G. analyzed the data. T.K. conducted the experiments with assistance from M.W., J.H. and L.M. G.Y. and A.M. conducted the bioinformatics analysis. A.M. helped design the LINE-1 plasmid constructs, D.C.L. helped with the Wnt plasmid design and constructs, and M.W. designed the shRNA construct. M.A. contributed reagents and analytical tools. T.K. wrote the paper with comments from all of the authors.

Corresponding author

Correspondence to Tomoko Kuwabara.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–3 (PDF 1668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwabara, T., Hsieh, J., Muotri, A. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12, 1097–1105 (2009). https://doi.org/10.1038/nn.2360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing