Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry

Abstract

Genomic studies demonstrate that, although the majority of the mammalian genome is transcribed, only about 2% of these transcripts are code for proteins. We investigated how the long, polyadenylated Evf2 noncoding RNA regulates transcription of the homeodomain transcription factors DLX5 and DLX6 in the developing mouse forebrain. We found that, in developing ventral forebrain, Evf2 recruited DLX and MECP2 transcription factors to important DNA regulatory elements in the Dlx5/6 intergenic region and controlled Dlx5, Dlx6 and Gad1 expression through trans and cis-acting mechanisms. Evf2 mouse mutants had reduced numbers of GABAergic interneurons in early postnatal hippocampus and dentate gyrus. Although the numbers of GABAergic interneurons and Gad1 RNA levels returned to normal in Evf2 mutant adult hippocampus, reduced synaptic inhibition occurred. These results suggest that noncoding RNA–dependent balanced gene regulation in embryonic brain is critical for proper formation of GABA-dependent neuronal circuitry in adult brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evf2TS/TS mice have increased Dlx5 and Dlx6 expression in the embryonic brain.
Figure 2: Loss of Evf2 affects DLX and MECP2 binding to Dlx5/6 intergenic enhancers in E13.5 MGE.
Figure 3: Evf2 does not affect DLX or MECP2 nuclear localization.
Figure 4: GABAergic interneuron loss in the P2 hippocampus and dentate gyrus of Evf2TS/TS mutant mice.
Figure 5: Evf2 trans-positively regulates Gad1 expression in E13.5 MGE, but not adult hippocampus.
Figure 6: GABAergic synaptic inhibition is reduced in CA1 layer of the adult hippocampus of Evf2TS/TS mutant mice.

Similar content being viewed by others

References

  1. Prasanth, K.V. & Spector, D.L. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev. 21, 11–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Mattick, J.S. A new paradigm for developmental biology. J. Exp. Biol. 210, 1526–1547 (2007).

    Article  PubMed  Google Scholar 

  3. Shamovsky, I. & Nudler, E. Gene control by large noncoding RNAs. Sci. STKE 2006, pe40 (2006).

    Article  PubMed  Google Scholar 

  4. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zerucha, T. et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J. Neurosci. 20, 709–721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilligan, P., Brenner, S. & Venkatesh, B. Fugu and human sequence comparison identifies novel human genes and conserved non-coding sequences. Gene 294, 35–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Santini, S., Boore, J.L. & Meyer, A. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res. 13, 1111–1122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F. & Mattick, J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA 105, 716–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Di Cristo, G. Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin. Genet. 72, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Bienvenu, T. & Chelly, J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat. Rev. Genet. 7, 415–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Moretti, P. & Zoghbi, H.Y. MeCP2 dysfunction in Rett syndrome and related disorders. Curr. Opin. Genet. Dev. 16, 276–281 (2006).

    Article  PubMed  Google Scholar 

  13. Chahrour, M. & Zoghbi, H.Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Dani, V.S. et al. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. USA 102, 12560–12565 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lewis, D.A., Hashimoto, T. & Volk, D.W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Q.P. et al. Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. Nucleic Acids Res. 32, 884–892 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Panganiban, G., Sebring, A., Nagy, L. & Carroll, S. The development of crustacean limbs and the evolution of arthropods. Science 270, 1363–1366 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Kohtz, J.D., Baker, D.P., Corte, G. & Fishell, G. Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125, 5079–5089 (1998).

    CAS  PubMed  Google Scholar 

  20. Kohtz, J.D. et al. N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128, 2351–2363 (2001).

    CAS  PubMed  Google Scholar 

  21. Feng, J. et al. Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids. Development 131, 4357–4370 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, S.A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Horike, S., Cai, S., Miyano, M., Cheng, J.F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Nan, X., Campoy, F.J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Le, T.N. et al. Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J. Biol. Chem. 282, 19071–19081 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kishi, N. & Macklis, J.D. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol. Cell. Neurosci. 27, 306–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Panganiban, G. & Rubenstein, J.L. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371–4386 (2002).

    CAS  PubMed  Google Scholar 

  28. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Pleasure, S.J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Marín, O. & Rubenstein, J.L. Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483 (2003).

    Article  PubMed  Google Scholar 

  31. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  32. Cobos, I. et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat. Neurosci. 8, 1059–1068 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Potier, B., Jouvenceau, A., Epelbaum, J. & Dutar, P. Age-related alterations of GABAergic input to CA1 pyramidal neurons and its control by nicotinic acetylcholine receptors in rat hippocampus. Neuroscience 142, 187–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, C., Cui, C. & Alkon, D.L. Age-dependent enhancement of inhibitory synaptic transmission in CA1 pyramidal neurons via GluR5 kainate receptors. Hippocampus (2009).

  35. Sleutels, F., Zwart, R. & Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Stühmer, T., Anderson, S.A., Ekker, M. & Rubenstein, J.L. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252 (2002).

    PubMed  Google Scholar 

  37. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cowles, C.R., Hirschhorn, J.N., Altshuler, D. & Lander, E.S. Detection of regulatory variation in mouse genes. Nat. Genet. 32, 432–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Yan, H., Yuan, W., Velculescu, V.E., Vogelstein, B. & Kinzler, K.W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Doss, S., Schadt, E.E., Drake, T.A. & Lusis, A.J. Cis-acting expression quantitative trait loci in mice. Genome Res. 15, 681–691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Mancini-DiNardo, D., Steele, S.J., Levorse, J.M., Ingram, R.S. & Tilghman, S.M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heng, J.I., Moonen, G. & Nguyen, L. Neurotransmitters regulate cell migration in the telencephalon. Eur. J. Neurosci. 26, 537–546 (2007).

    Article  PubMed  Google Scholar 

  44. Cuzon, V.C., Yeh, P.W., Cheng, Q. & Yeh, H.H. Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb. Cortex 16, 1377–1388 (2006).

    Article  PubMed  Google Scholar 

  45. López-Bendito, G. et al. Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb. Cortex 13, 932–942 (2003).

    Article  PubMed  Google Scholar 

  46. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giacometti, E., Luikenhuis, S., Beard, C. & Jaenisch, R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc. Natl. Acad. Sci. USA 104, 1931–1936 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schüle, B., Li, H.H., Fisch-Kohl, C., Purmann, C. & Francke, U. DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency. Am. J. Hum. Genet. 81, 492–506 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Campbell for providing early passage W4 embryonic stem cells, and training and guidance in ES cell manipulation, M. Ekker for Dlx5/6 BAC, P. Lui and N. Copeland for PL253, PL452, bacterial strains and protocols for BAC recombineering, G. Taborn and P. Iannaccone for blastocyst injections, D. Eisentstat for antibody specific to DLX2, A. Joyner for the triple polyadenylation construct, J. Rubenstein for Gad1 probe, and Q. Ma for v-Glut1 probe. We thank K. Jones (Northwestern University) for establishing the conditions for embryonic tissue ChIP. This work was funded by National Institute of Child Health and Human Development grants RO1 HD044745 and R21 HD049875, the Illinois Regenerative Medicine Institute, and an Illinois Excellence in Academic Medicine grant to J.D.K.

Author information

Authors and Affiliations

Authors

Contributions

A.M.B. performed the experiments in Figures 1,2,3,4,5. M.J.W.V. carried out BAC recombineering, ES cell homologous targeting and screening for generating Evf2 TS mice. J.C.S. performed the experiments shown in Figures 1, 3 and 5. M.F.C. carried out the experiments shown in Figures 1, 5 and Supplementary Figure 1. E.A.S. and J.F.D. contributed electrophysiology experiments and results for Figure 6. J.D.K. conceived of and directed experiments and wrote the manuscript.

Corresponding author

Correspondence to Jhumku D Kohtz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, A., VanGompel, M., Sametsky, E. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12, 1020–1027 (2009). https://doi.org/10.1038/nn.2371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing