Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh

Abstract

Neural stem cells (NSCs) are controlled by diffusible factors. The transcription factor Sox2 is expressed by NSCs and Sox2 mutations in humans cause defects in the brain and, in particular, in the hippocampus. We deleted Sox2 in the mouse embryonic brain. At birth, the mice showed minor brain defects; shortly afterwards, however, NSCs and neurogenesis were completely lost in the hippocampus, leading to dentate gyrus hypoplasia. Deletion of Sox2 in adult mice also caused hippocampal neurogenesis loss. The hippocampal developmental defect resembles that caused by late sonic hedgehog (Shh) loss. In mutant mice, Shh and Wnt3a were absent from the hippocampal primordium. A SHH pharmacological agonist partially rescued the hippocampal defect. Chromatin immunoprecipitation identified Shh as a Sox2 target. Sox2-deleted NSCs did not express Shh in vitro and were rapidly lost. Their replication was partially rescued by the addition of SHH and was almost fully rescued by conditioned medium from normal cells. Thus, NSCs control their status, at least partly, through Sox2-dependent autocrine mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sox2 conditional null allele, SOX2 protein ablation by nestin-Cre in mutant embryonic brain and in vivo morphological defects of nestin-cre Sox2-deleted mutants (Sox2null).
Figure 2: Cellular defects of nestin-cre Sox2-deleted mutant brain.
Figure 3: Sox2-deleted mutant brains have defective Shh and Wnt3a mRNA expression.
Figure 4: SHH colocalizes with SOX2 in neural cells in postnatal neurogenic regions and its expression is lost in Sox2null mutants.
Figure 5: Stimulation of the Shh signaling pathway rescues hippocampal NSC and neurogenesis in Sox2 mutants.
Figure 6: Sox2 deletion in adult brain leads to rapid loss of radial glia cells and of cell proliferation in the hippocampus dentate gyrus.
Figure 7: Impaired maintenance of Sox2null NSCs in culture and rescue by extracellular factors.
Figure 8: Shh is a direct target of SOX2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Zappone, M.V., Galli, R., Catena, R. & Nicolis, S.K. Sox2 regulatory sequences direct expression of a beta-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382 (2000).

    CAS  PubMed  Google Scholar 

  6. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fantes, J. et al. Mutations in SOX2 cause anophthalmia. Nat. Genet. 33, 461–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kelberman, D. et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J. Clin. Invest. 116, 2442–2455 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sisodiya, S.M. et al. Role of SOX2 mutations in human hippocampal malformations and epilepsy. Epilepsia 47, 534–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ferri, A.L., Cavallaro, M., Braida, D., Di Cristofano, A. & Nicolis, S.K. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Cavallaro, M., Mariani, J., Lancini, C., Latorre, E. & Nicolis, S.K. Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 135, 541–557 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Medina, D.L. et al. TrkB regulates neocortex formation through the Shc/PLCγ-mediated control of neuronal migration. EMBO J. 23, 3803–3814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merkle, F.T., Tramontin, A.D., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci. USA 101, 17528–17532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doetsch, F. The glial identity of neural stem cells. Nat. Neurosci. 6, 1127–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Roelink, H. Hippocampus formation: an intriguing collaboration. Curr. Biol. 10, R279–R281 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S.M., Tole, S., Grove, E. & McMahon, A. A local Wnt3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  PubMed  Google Scholar 

  17. Machold, R. et al. Sonic Hedgehog is required for progenitor cell maintenance in the telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weber, P., Metzger, D. & Chambon, P. Temporally controlled targeted somatic mutagenesis in the mouse brain. Eur. J. Neurosci. 14, 1777–1783 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Akagi, K. et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 25, 1766–1773 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gritti, A. et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyagi, S. et al. Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett. 582, 2811–2815 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Lai, K., Kaspar, B.K., Gage, F.H. & Schaffer, D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Palma, V. & Ruiz i Altaba, A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Palma, V. et al. Sonic hedgehog controls stem cells behavior in the postnatal and adult brain. Development 132, 335–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Balordi, F. & Fishell, G. Hedgehog signaling in the subventricular zone is required both for the maintenance of stem cells and the migration of newborn neurons. J. Neurosci. 27, 5936–5947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y., McMahon, A.P. & Allen, B.L. Shifting paradigms in Hedgehog signaling. Curr. Opin. Cell Biol. 19, 159–165 (2007).

    Article  PubMed  Google Scholar 

  30. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Jeong, Y., El Jaick, K., Roessler, E., Muenke, M. & Epstein, D.J. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133, 761–772 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Taranova, O.V. et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 20, 1187–1202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fasano, C.A. et al. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1, 87–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Shi, Y. et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 78–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Riquelme, P.A., Drapeau, E. & Doetsch, F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Phil. Trans. R. Soc. Lond. B 363, 123–137 (2008).

    Article  Google Scholar 

  36. Gilbertson, R.J. & Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Marson, A. et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3, 132–135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I. & Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Schmitz, M. et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell–based immunotherapy. Br. J. Cancer 96, 1293–1301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romer, J.T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6, 229 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Nyfeler, Y. et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J. 24, 3504–3515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conlon, R.A. & Herrmann, B.G. Detection of messenger RNA by in situ hybridization to postimplantation embryo whole mounts. Methods Enzymol. 225, 373–383 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Weinmann, A.S. & Farnham, P.J. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell. Biol. 25, 1804–1820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Dehò and S. Zangrossi for the pcnBTn10 recAcat C-5507 E. coli C strain, S. Dymecki for the pLM-FLRT-3 vector and the FLPeR mouse strain, R. Klein through Jackson Laboratories for the nestin-cre mouse strain, P. Chambon for the creERT2 gene, Curis for the 1.2 SHH agonist18, S. Lugert for help with the Notch pathway expression studies, J. Cozzi and GenOway for help with ES cell targeting, C. Tiveron and Layline Genomics for blastocyst injections, C. Tiveron and L. Tatangelo for Sox2-creERT2 pronuclear injections, R. Caccia for help with in situ hybridization, E. Bagnaresi and A. Marinelli for help with constructs, A. Ronchi for advice on EMSAs and ChIP and D. Santoni for animal care. The monoclonal antibody to SHH developed by T.M. Jessell was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the US National Institute of Child Health and Human Development and maintained by the University of Iowa. This work was supported by Telethon (GGP05122), the European Economic Community (STEMBRIDGE), Fondazione Cariplo, Associazione Italiana Ricerca sul Cancro, Fondazione Banca del Monte di Lombardia, the Ministero Istruzione Università e Ricerca (Cofin) and FAR 2004-7 grants to S.K.N., and by the Max Planck Gesellschaft through V. Taylor.

Author information

Authors and Affiliations

Authors

Contributions

R.F. and M.V. generated the Sox2 mutations in ES cells, and carried out animal breeding, cell cultures and RT-PCR. A.L.M.F. performed in situ hybridization and immunohistochemistry. E.L. carried out ChIP and EMSAs. J.M. performed the lentiviral rescue experiment. C.G. carried out the Notch signaling studies and initial work with in vitro cultures and for in vitro SOX2 deletion. C.L. participated in immunochemical studies. V. Tosetti participated in the in vitro culture work and immunocytochemistry. S.O. discussed the experiments and wrote the paper. V. Taylor participated in the in vivo rescue experiments, discussed data and supervised initial in vitro studies. S.K.N. devised the experiments, supervised the work and wrote the paper.

Corresponding author

Correspondence to Silvia K Nicolis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favaro, R., Valotta, M., Ferri, A. et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12, 1248–1256 (2009). https://doi.org/10.1038/nn.2397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing