Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clarke's column neurons as the focus of a corticospinal corollary circuit

Abstract

Proprioceptive sensory signals inform the CNS of the consequences of motor acts, but effective motor planning involves internal neural systems capable of anticipating actual sensory feedback. Just where and how predictive systems exert their influence remains poorly understood. We explored the possibility that spinocerebellar neurons that convey proprioceptive sensory information also integrate information from cortical command systems. Analysis of the circuitry and physiology of identified dorsal spinocerebellar tract neurons in mouse spinal cord revealed distinct populations of Clarke's column neurons that received direct excitatory and/or indirect inhibitory inputs from descending corticospinal axons. The convergence of these descending inhibitory and excitatory inputs to Clarke's column neurons established local spinal circuits with the capacity to mark or modulate incoming proprioceptive input. Together, our genetic, anatomical and physiological results indicate that Clarke's column spinocerebellar neurons nucleate local spinal corollary circuits that are relevant to motor planning and evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomic and genetic characterization of postnatal mouse dSC neurons.
Figure 2: Anatomy of proprioceptive inputs to dSC neurons.
Figure 3: Physiology of proprioceptive and cortical inputs to dSC neurons.
Figure 4: Anatomy of cortical inputs to dSC neurons.
Figure 5: Anatomy of cortically evoked inhibition of dSC neurons.
Figure 6: Physiology of cortically evoked inhibition of dSC neurons.
Figure 7: Cortical inhibition of sensory-evoked responses in dSC neurons.

Similar content being viewed by others

References

  1. Eccles, J.C., Oscarsson, O. & Willis, W.D. Synaptic action of group I and II afferent fibres of muscle on the cells of the dorsal spinocerebellar tract. J. Physiol. (Lond.) 158, 517–543 (1961).

    Article  CAS  Google Scholar 

  2. Lundberg, A. Ascending spinal hindlimb pathways in the cat. Prog. Brain Res. 12, 135–163 (1964).

    Article  CAS  Google Scholar 

  3. Oscarsson, O. Functional organization of the spino- and cuneocerebellar tracts. Physiol. Rev. 45, 495–522 (1965).

    Article  CAS  Google Scholar 

  4. Bosco, G. & Poppele, R.E. Proprioception from a spinocerebellar perspective. Physiol. Rev. 81, 539–568 (2001).

    Article  CAS  Google Scholar 

  5. Matsushita, M. & Hosoya, Y. Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res. 173, 185–200 (1979).

    Article  CAS  Google Scholar 

  6. Edgley, S.A. & Jankowska, E. Information processed by dorsal horn spinocerebellar tract neurones in the cat. J. Physiol. (Lond.) 397, 81–97 (1988).

    Article  CAS  Google Scholar 

  7. Walmsley, B. Central synaptic transmission: studies at the connection between primary afferent fibres and dorsal spinocerebellar tract (DSCT) neurones in Clarke's column of the spinal cord. Prog. Neurobiol. 36, 391–423 (1991).

    Article  CAS  Google Scholar 

  8. Hongo, T. et al. Trajectory of group Ia and Ib fibers from the hind-limb muscles at the L3 and L4 segments of the spinal cord of the cat. J. Comp. Neurol. 262, 159–194 (1987).

    Article  CAS  Google Scholar 

  9. Mann, M.D. Clarke's column and the dorsal spinocerebellar tract: a review. Brain Behav. Evol. 7, 34–83 (1973).

    Article  CAS  Google Scholar 

  10. Wolpert, D.M., Ghahramani, Z. & Jordan, M.I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  Google Scholar 

  11. Wolpert, D.M. & Miall, R.C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Article  Google Scholar 

  12. Sommer, M.A. & Wurtz, R.H. A pathway in primate brain for internal monitoring of movements. Science 296, 1480–1482 (2002).

    Article  CAS  Google Scholar 

  13. Jeannerod, M. Motor Cognition: What Actions Tell the Self 1–21 (Oxford University Press, Oxford, 2006).

  14. Roy, J.E. & Cullen, K.E. Selective processing of vestibular reafference during self-generated head motion. J. Neurosci. 21, 2131–2142 (2001).

    Article  CAS  Google Scholar 

  15. Mulliken, G.H., Musallam, S. & Andersen, R.A. Forward estimation of movement state in posterior parietal cortex. Proc. Natl. Acad. Sci. USA 105, 8170–8177 (2008).

    Article  CAS  Google Scholar 

  16. Ebner, T.J. & Pasalar, S. Cerebellum predicts the future motor state. Cerebellum 7, 583–588 (2008).

    Article  Google Scholar 

  17. Seki, K., Perlmutter, S.I. & Fetz, E.E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6, 1309–1316 (2003).

    Article  CAS  Google Scholar 

  18. Hongo, T. & Okada, Y. Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract. Exp. Brain Res. 3, 163–177 (1967).

    CAS  PubMed  Google Scholar 

  19. Hongo, T., Okada, Y. & Sato, M. Corticofugal influences on transmission to the dorsal spinocerebellar tract from hindlimb primary afferents. Exp. Brain Res. 3, 135–149 (1967).

    CAS  PubMed  Google Scholar 

  20. Mott, F. Microscopical examination of Clarke's column in man, the monkey and the dog. J. Anat. Physiol. 22, 479–495 (1888).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nosrat, C.A. et al. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res. 286, 191–207 (1996).

    Article  CAS  Google Scholar 

  22. Moore, M.W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  CAS  Google Scholar 

  23. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  Google Scholar 

  24. Matsushita, M. & Gao, X. Projections from the thoracic cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J. Comp. Neurol. 386, 409–421 (1997).

    Article  CAS  Google Scholar 

  25. Dumitriu, D., Cossart, R., Huang, J. & Yuste, R. Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cereb. Cortex 17, 81–91 (2007).

    Article  Google Scholar 

  26. Yoshida, Y., Han, B., Mendelsohn, M. & Jessell, T.M. PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52, 775–788 (2006).

    Article  CAS  Google Scholar 

  27. Alvarez, F.J., Villalba, R.M., Zerda, R. & Schneider, S.P. Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J. Comp. Neurol. 472, 257–280 (2004).

    Article  CAS  Google Scholar 

  28. Bareyre, F.M., Kerschensteiner, M., Misgeld, T. & Sanes, J.R. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat. Med. 11, 1355–1360 (2005).

    Article  CAS  Google Scholar 

  29. Finger, J.H. et al. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J. Neurosci. 22, 10346–10356 (2002).

    Article  CAS  Google Scholar 

  30. López-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  Google Scholar 

  31. Lomelí, J., Quevedo, J., Linares, P. & Rudomin, P. Local control of information flow in segmental and ascending collaterals of single afferents. Nature 395, 600–604 (1998).

    Article  Google Scholar 

  32. Betley, J.N. et al. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Cell 139, 161–174 (2009).

    Article  CAS  Google Scholar 

  33. Prochazka, A., Gillard, D. & Bennett, D.J. Implications of positive feedback in the control of movement. J. Neurophysiol. 77, 3237–3251 (1997).

    Article  CAS  Google Scholar 

  34. Arshavsky, Y.I., Berkinblit, M.B., Fukson, O.I., Gelfand, I.M. & Orlovsky, G.N. Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Res. 43, 276–279 (1972).

    Article  CAS  Google Scholar 

  35. Arshavsky, Y.I., Gelfand, I.M., Orlovsky, G.N., Pavlova, G.A. & Popova, L.B. Origin of signals conveyed by the ventral spino-cerebellar tract and spino-reticulo-cerebellar pathway. Exp. Brain Res. 54, 426–431 (1984).

    Article  Google Scholar 

  36. Lundberg, A. Function of the ventral spinocerebellar tract. A new hypothesis. Exp. Brain Res. 12, 317–330 (1971).

    CAS  PubMed  Google Scholar 

  37. Poulet, J.F. & Hedwig, B. The cellular basis of a corollary discharge. Science 311, 518–522 (2006).

    Article  CAS  Google Scholar 

  38. Blakemore, S.J. & Sirigu, A. Action prediction in the cerebellum and in the parietal lobe. Exp. Brain Res. 153, 239–245 (2003).

    Article  Google Scholar 

  39. Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  Google Scholar 

  40. Arsénio Nunes, M.L. & Sotelo, C. Development of the spinocerebellar system in the postnatal rat. J. Comp. Neurol. 237, 291–306 (1985).

    Article  Google Scholar 

  41. Hantman, A.W., van den Pol, A.N. & Perl, E.R. Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression. J. Neurosci. 24, 836–842 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Han and K. Miao for technical assistance, J. de Nooij and G. Sürmeli for help in retrograde labeling of proprioceptive afferents, J. Kirkland and M. Mendelsohn for animal care, and K. MacArthur and I. Schieren for help in preparing the manuscript. We are grateful to S. Arber, N. Asai, C. Cebrian, Z.J. Huang, J. Milbrandt, J. Sanes, G. Szabo and MMRCC-GENSAT for mouse lines, and especially to F. Costantini for permission to use unpublished GdnfCreERT2 mice. We thank R. Axel, M. Churchland, K. Franks, S. Grillner, J. Krakauer, C. Miall, S. Poliak, K. Ritola, D. Stettler and D. Wolpert for discussion and/or comments on the manuscript. A.W.H. was supported by the Howard Hughes Medical Institute and the Robert Leet and Clara Guthrie Patterson Trust Fellowship. T.M.J. was supported by grants from the National Institute of Neurological Disorders and Stroke, the Wellcome Trust, the G. Harold and Leila Y. Mathers Foundation, Project A.L.S. and is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.W.H. and T.M.J. conceived of the project and planned the experiments. A.W.H. performed the experiments. A.W.H. and T.M.J. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Thomas M Jessell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 2–6 and Supplementary Results (PDF 7077 kb)

Supplementary Figure 1

Distribution of corticospinal terminals on dSC neurons. (PPT 26901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hantman, A., Jessell, T. Clarke's column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13, 1233–1239 (2010). https://doi.org/10.1038/nn.2637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing