Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS

Abstract

Many mutations confer one or more toxic function(s) on copper/zinc superoxide dismutase 1 (SOD1) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we found that oxidized wild-type SOD1 and mutant SOD1 share a conformational epitope that is not present in normal wild-type SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord were markedly C4F6 immunoreactive, indicating that an aberrant wild-type SOD1 species was present. Recombinant, oxidized wild-type SOD1 and wild-type SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to that of FALS-linked mutant SOD1. Our findings suggest that wild-type SOD1 can be pathogenic in SALS and identify an SOD1-dependent pathogenic mechanism common to FALS and SALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass spectrometry confirms the oxidation of wild-type SOD1 on exposure to hydrogen peroxide (H2O2).
Figure 2: The structure of wild-type SOD1.
Figure 3: The C4F6 monoclonal antibody reacts with a conformational epitope shared by SOD1ox and mutant SOD1.
Figure 4: SOD1ox recapitulates the inhibitory effect of FALS-linked mutant SOD1 on anterograde FAT.
Figure 5: p38 mediates the inhibition of anterograde FAT induced by SOD1ox.
Figure 6: The C4F6 monoclonal antibody is reactive for wild-type SOD1 in SALS tissues.
Figure 7: Wild-type SOD1 purified from SALS tissues inhibits anterograde FAT.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tandan, R. & Bradley, W.G. Amyotrophic lateral sclerosis. Part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18, 271–280 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Valdmanis, P.N., Daoud, H., Dion, P.A. & Rouleau, G.A. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep. 9, 198–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Valentine, J.S., Doucette, P.A. & Zittin Potter, S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem. 74, 563–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Chattopadhyay, M. & Valentine, J.S. Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxid. Redox. Signal 11, 1603–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furukawa, Y., Fu, R., Deng, H.X., Siddique, T. & O'Halloran, T.V. Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proc. Natl. Acad. Sci. USA 103, 7148–7153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Molnar, K.S. et al. A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the Cu/Zn superoxide dismutase electrostatic loop. J. Biol. Chem. 284, 30965–30973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prudencio, M., Hart, P.J., Borchelt, D.R. & Andersen, P.M. Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum. Mol. Genet. 18, 3217–3226 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Q., Johnson, J.L., Agar, N.Y. & Agar, J.N. Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. PLoS Biol. 6, e170 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morfini, G.A. et al. Axonal transport defects in neurodegenerative diseases. J. Neurosci. 29, 12776–12786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ezzi, S.A., Urushitani, M. & Julien, J.P. Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J. Neurochem. 102, 170–178 (2007).

    Article  PubMed  Google Scholar 

  12. Gruzman, A. et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 104, 12524–12529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beckman, J.S., Estevez, A.G., Crow, J.P. & Barbeito, L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 24, S15–S20 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bredesen, D.E., Ellerby, L.M., Hart, P.J., Wiedau-Pazos, M. & Valentine, J.S. Do posttranslational modifications of CuZnSOD lead to sporadic amyotrophic lateral sclerosis? Ann. Neurol. 42, 135–137 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kabashi, E., Valdmanis, P.N., Dion, P. & Rouleau, G.A. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann. Neurol. 62, 553–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Durazo, A. et al. Metal-free superoxide dismutase-1 and three different ALS variants share a similar partially unfolded {beta}-barrel at physiological temperature. J. Biol. Chem. 277, 15923–15931 (2009).

    Google Scholar 

  17. Estévez, A.G. et al. Induction of nitric oxide–dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–2500 (1999).

    Article  PubMed  Google Scholar 

  18. Rakhit, R. et al. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J. Biol. Chem. 277, 47551–47556 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Banci, L. et al. Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS. Proc. Natl. Acad. Sci. USA 104, 11263–11267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Urushitani, M., Ezzi, S.A. & Julien, J.P. Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 104, 2495–2500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brady, S.T., Lasek, R.J. & Allen, R.D. Fast axonal transport in extruded axoplasm from squid giant axon. Science 218, 1129–1131 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Gros-Louis, F., Soucy, G., Lariviere, R. & Julien, J.P. Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199 (2010).

    CAS  PubMed  Google Scholar 

  23. Fujiwara, N. et al. Oxidative modification to cysteine sulfonic acid of Cys111 in human copper-zinc superoxide dismutase. J. Biol. Chem. 282, 35933–35944 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari, A. et al. Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J. Biol. Chem. 284, 27746–27758 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rakhit, R. et al. Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J. Biol. Chem. 279, 15499–15504 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Svensson, A.K., Bilsel, O., Kondrashkina, E., Zitzewitz, J.A. & Matthews, C.R. Mapping the folding free energy surface for metal-free human Cu,Zn superoxide dismutase. J. Mol. Biol. 364, 1084–1102 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Brady, S.T., Lasek, R.J. & Allen, R.D. Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil. 5, 81–101 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S.T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morfini, G. et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat. Neurosci. 9, 907–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Morfini, G.A. et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat. Neurosci. 12, 864–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Munoz, L. et al. A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model. J. Neuroinflammation 4, 21 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kerman, A. et al. Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol. 119, 335–344 (2010).

    Article  PubMed  Google Scholar 

  34. Liu, H.N. et al. Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann. Neurol. 66, 75–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Shibata, N., Asayama, K., Hirano, A. & Kobayashi, M. Immunohistochemical study on superoxide dismutases in spinal cords from autopsied patients with amyotrophic lateral sclerosis. Dev. Neurosci. 18, 492–498 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Shibata, N. et al. Cu/Zn superoxide dismutase–like immunoreactivity in Lewy body–like inclusions of sporadic amyotrophic lateral sclerosis. Neurosci. Lett. 179, 149–152 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Watanabe, M. et al. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8, 933–941 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Rakhit, R. et al. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nat. Med. 13, 754–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Pasinelli, P. et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat. Neurosci. 9, 108–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Vande Velde, C., Miller, T.M., Cashman, N.R. & Cleveland, D.W. Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc. Natl. Acad. Sci. USA 105, 4022–4027 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lindberg, M.J., Normark, J., Holmgren, A. & Oliveberg, M. Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers. Proc. Natl. Acad. Sci. USA 101, 15893–15898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Vos, K.J., Grierson, A.J., Ackerley, S. & Miller, C.C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Ström, A.L. et al. Retrograde axonal transport and motor neuron disease. J. Neurochem. 106, 495–505 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Collard, J.F., Cote, F. & Julien, J.P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Williamson, T.L. & Cleveland, D.W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Fischer, L.R. & Glass, J.D. Axonal degeneration in motor neuron disease. Neurodegener. Dis. 4, 431–442 (2007).

    Article  PubMed  Google Scholar 

  48. Strange, R.W. et al. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. J. Mol. Biol. 356, 1152–1162 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hayward, L.J. et al. Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 277, 15923–15931 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, L. et al. Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse. Hum. Mol. Genet. 18, 1642–1651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Landers and P. Sapp for DNA sequencing analysis of the SALS cases employed in this study, L. Hayward, A. Tiwari and R.-J. Chain for help with expression of recombinant wild-type SOD1, S. Berth, A. Leitman and M. Saparauskaite for help with axoplasm vesicle transport assays, A. Kaminska and L. Molla for help with biochemical experiments in squid axoplasm, M. Prudencio and D. Borchelt for cell lysates containing SOD1 G93 mutants, C. Vanderburg, E. Tamrazian, A. Bialik and the Diabetes and Endocrinology Research Center (University of Massachusetts Medical Center) for assistance with immunohistochemistry, K. Fitch and the Massachusetts Alzheimer Disease Research Center (P50AG005134) for assistance with human tissue samples, J. Zitzewitz for C6A/C111S-SOD1 protein, A. Weiss for assistance with mice, K. Green at the University of Massachusetts Medical Center Proteomics and Mass Spectrometry Facility for analysis of C6A/C111S-SOD1, and G. Petsko for insightful dialogue and support. We acknowledge financial support from the ALS Therapy Alliance-CVS Pharmacy (D.A.B. and G.M.), 2007/2008 Marine Biological Laboratory research fellowships (G.M.), the ALS Association (D.A.B., R.H.B. Jr, G.M. and S.T.B.), the US National Institutes of Health (D.A.B. (National Institute on Neurological Disorders and Stroke, RO1NS067206-01), R.H.B. Jr (National Institute on Neurological Disorders and Stroke, U01NS05225-03, R01NS050557-05, 1RC1NS068391-01 and 1RC2NS070342-01), S.T.B. and J.N.A.), Canadian Institutes of Health Research (J.-P.J.), the Angel Fund (R.H.B. Jr) and Project ALS (R.H.B. Jr).

Author information

Authors and Affiliations

Authors

Contributions

D.A.B., G.M., S.T.B. and R.H.B. Jr wrote the manuscript. D.A.B. prepared recombinant and immunopurified SOD1 proteins. G.M., Y.S. and S.T.B. performed vesicle motility assays and biochemical experiments in isolated squid axoplasm. N.M.K. and J.N.A. performed the mass spectrometry. F.G.-L. and J.-P.J. prepared the mutant-specific antibodies. P.P. made the SOD1 exon deleted constructs. H.G., D.M.-Y. and M.P.F. provided human tissues for staining. D.A.B., B.A.F. and N.L. performed western analyses. All of the authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Daryl A Bosco or Robert H Brown Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–3 (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosco, D., Morfini, G., Karabacak, N. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13, 1396–1403 (2010). https://doi.org/10.1038/nn.2660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing