Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease

Abstract

Individuals with nonsyndromic congenital retinal nonattachment (NCRNA) are totally blind from birth. The disease afflicts 1% of Kurdish people living in a group of neighboring villages in North Khorasan, Iran. We found that NCRNA is caused by a 6,523-bp deletion that spans a remote cis regulatory element 20 kb upstream from ATOH7 (Math5), a bHLH transcription factor gene that is required for retinal ganglion cell (RGC) and optic nerve development. In humans, the absence of RGCs stimulates massive neovascular growth of fetal blood vessels in the vitreous and early retinal detachment. The remote ATOH7 element appears to act as a secondary or 'shadow' transcriptional enhancer. It has minimal sequence similarity to the primary enhancer, which is close to the ATOH7 promoter, but drives transgene expression with an identical spatiotemporal pattern in the mouse retina. The human transgene also functions appropriately in zebrafish, reflecting deep evolutionary conservation. These dual enhancers may reinforce ATOH7 expression during early critical stages of eye development when retinal neurogenesis is initiated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NCRNA disease.
Figure 2: Anatomical findings in NCRNA.
Figure 3: Homozygous deletion of 5′ ATOH7 genomic sequences in NCRNA.
Figure 4: Endpoints of the NCRNA deletion.
Figure 5: The NCRNA mutation deletes an ATOH7 retinal enhancer.
Figure 6: Activity of the remote ATOH7 retinal enhancer in 3034-BGnCherry mice.
Figure 7: Remote and primary ATOH7 enhancers have similar activity in the developing mouse retina, indicated by coexpression of nuCherry and GFP transgenes.
Figure 8: The human remote ATOH7 enhancer functions in developing zebrafish.

Similar content being viewed by others

References

  1. Livesey,F.J. & Cepko,C.L. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2,109–118 (2001).

    Article  CAS  Google Scholar 

  2. West,H., Richardson, W.D. & Fruttiger,M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes.Development 132,1855–1862 (2005).

    Article  CAS  Google Scholar 

  3. Brown,N.L. et al.Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125,4821–4833 (1998).

    CAS  PubMed  Google Scholar 

  4. Brzezinski,J.A. & Glaser,T. Math5 establishes retinal ganglion cell competence in postmitotic progenitor cells.Invest. Ophthalmol. Vis. Sci. 45,3422 (2004).

    Google Scholar 

  5. Brown,N.L., Patel, S., Brzezinski, J. & Glaser,T. Math5 is required for retinal ganglion cell and optic nerve formation.Development 128,2497–2508 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang,S.W. et al.Requirement for math5 in the development of retinal ganglion cells.Genes Dev. 15,24–29 (2001).

    Article  CAS  Google Scholar 

  7. Brzezinski,J.A. et al.Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice.Invest. Ophthalmol. Vis. Sci. 46,2540–2551 (2005).

    Article  Google Scholar 

  8. Kay,J.N., Finger-Baier,K.C., Roeser,T., Staub,W. & Baier,H. Retinal ganglion cell genesis requires lakritz, a zebrafish Atonal homolog.Neuron 30,725–736 (2001).

    Article  CAS  Google Scholar 

  9. Yang,Z., Ding, K., Pan,L., Deng,M. & Gan,L. Math5 determines the competence state of retinal ganglion cell progenitors.Dev. Biol. 264,240–254 (2003).

    Article  CAS  Google Scholar 

  10. Mu,X. et al.A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev. Biol. 280,467–481 (2005).

    Article  CAS  Google Scholar 

  11. Gariano,R.F. & Gardner,T.W. Retinal angiogenesis in development and disease.Nature 438,960–966 (2005).

    Article  CAS  Google Scholar 

  12. Fruttiger,M. Development of the retinal vasculature.Angiogenesis 10,77–88 (2007).

    Article  Google Scholar 

  13. Provis,J.M. Development of the primate retinal vasculature.Prog. Retin. Eye Res. 20,799–821 (2001).

    Article  CAS  Google Scholar 

  14. Wright,A.F., Chakarova,C.F., Abd El-Aziz,M.M. & Bhattacharya,S.S. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait.Nat. Rev. Genet. 11,273–284 (2010).

    Article  CAS  Google Scholar 

  15. Swaroop,A., Kim, D. & Forrest, D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina.Nat. Rev. Neurosci. 11,563–576 (2010).

    Article  CAS  Google Scholar 

  16. Warburg,M. Retinal malformations: aetiological heterogeneity and morphological similarity in congenital retinal non-attachment and falciform folds. Doyne Memorial Lecture. Trans. Ophthalmol. Soc. U. K. 99,272–283 (1979).

    CAS  PubMed  Google Scholar 

  17. Phillips,C.I. & Stokoe,N.L. Congenital hereditary bilateral nonattachment of retina: a sibship of two males.J. Pediatr. Ophthalmol. Strabismus 16,358–363 (1979).

    CAS  PubMed  Google Scholar 

  18. Ghiasvand,N.M., Shirzad,E., Naghavi,M. & Vaez Mahdavi,M.R. High incidence of autosomal recessive nonsyndromal congenital retinal nonattachment (NCRNA) in an Iranian founding population.Am. J. Med. Genet. 78,226–232 (1998).

    Article  CAS  Google Scholar 

  19. Ghiasvand,N.M. et al.Nonsyndromic congenital retinal nonattachment gene maps to human chromosome band 10q21.Am. J. Med. Genet. 90,165–168 (2000).

    Article  CAS  Google Scholar 

  20. Ghiasvand,N.M., Fleming,T.P., Helms,C., Avisa, A. & Donis-Keller, H. Genetic fine mapping of the gene for nonsyndromic congenital retinal nonattachment.Am. J. Med. Genet. 92,220–223 (2000).

    Article  CAS  Google Scholar 

  21. Hong,J.W., Hendrix, D.A. & Levine, M.S. Shadow enhancers as a source of evolutionary novelty. Science 321,1314 (2008).

    Article  CAS  Google Scholar 

  22. Perry,J.R. Forced migration in Iran during the seventeenth and eighteenth centuries.Iran. Stud. 8,199–215 (1975).

    Article  Google Scholar 

  23. Brodrick,J.D. Corneal blood staining after hyphaema.Br. J. Ophthalmol. 56,589–593 (1972).

    Article  CAS  Google Scholar 

  24. Brodsky,M.C. Nystagmus in children. in Paediatric Neuro-ophthalmology, 383–442 (Springer, New York,2010).

    Book  Google Scholar 

  25. Van Gelder,R.N., Wee,R., Lee, J.A. & Tu, D.C. Reduced pupillary light responses in mice lacking cryptochromes. Science 299,222 (2003).

    Article  CAS  Google Scholar 

  26. Brzezinski,J.A. et al.Retinal ganglion cells are required for normal retinal vascular development and hyaloid regression.Dev. Biol. (in the press) (2011).

  27. Lin,B., Wang, S.W. & Masland, R.H. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts.Neuron 43,475–485 (2004).

    Article  CAS  Google Scholar 

  28. Brown,N.L., Dagenais,S.L., Chen, C.M. & Glaser, T. Molecular characterization and mapping of ATOH7, a human atonal homolog with a predicted role in retinal ganglion cell development.Mamm. Genome 13,95–101 (2002).

    Article  CAS  Google Scholar 

  29. Prasov,L., Brown, N.L. & Glaser, T. A critical analysis of Atoh7 (Math5) mRNA splicing in the developing mouse retina.PLoS ONE 5,e12315 (2010).

    Article  Google Scholar 

  30. Hutcheson,D.A. et al.bHLH-dependent and -independent modes of Ath5 gene regulation during retinal development.Development 132,829–839 (2005).

    Article  CAS  Google Scholar 

  31. Riesenberg,A.N. et al.Pax6 regulation of Math5 during mouse retinal neurogenesis.Genesis 47,175–187 (2009).

    Article  CAS  Google Scholar 

  32. Skowronska-Krawczyk,D. et al.Conserved regulatory sequences in Atoh7 mediate non-conserved regulatory responses in retina ontogenesis.Development 136,3767–3777 (2009).

    Article  CAS  Google Scholar 

  33. Poggi,L., Vitorino, M., Masai,I. & Harris,W.A. Influences on neural lineage and mode of division in the zebrafish retina in vivo.J. Cell Biol. 171,991–999 (2005).

    Article  CAS  Google Scholar 

  34. Lee,B.L., Bateman, J.B. & Schwartz, S.D. Posterior segment neovascularization associated with optic nerve aplasia.Am. J. Ophthalmol. 122,131–133 (1996).

    Article  CAS  Google Scholar 

  35. Chen,J. & Smith, L.E. Retinopathy of prematurity.Angiogenesis 10,133–140 (2007).

    Article  Google Scholar 

  36. Palmer,E.A. et al.Incidence and early course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 98,1628–1640 (1991).

    Article  CAS  Google Scholar 

  37. Hsiung,F. & Moses,K. Retinal development inDrosophila: specifying the first neuron.Hum. Mol. Genet. 11,1207–1214 (2002).

    Article  CAS  Google Scholar 

  38. Hufnagel,R.B., Le, T.T., Riesenberg, A.L. & Brown, N.L. Neurog2 controls the leading edge of neurogenesis in the mammalian retina.Dev. Biol. 340,490–503 (2009).

    Article  Google Scholar 

  39. Willardsen,M.I. et al.Temporal regulation ofAth5 gene expression during eye development.Dev. Biol. 326,471–481 (2009).

    Article  CAS  Google Scholar 

  40. Hobert,O. Gene regulation: enhancers stepping out of the shadow.Curr. Biol. 20,R697–R699 (2010).

    Article  CAS  Google Scholar 

  41. Kay,J.N., Link, B.A. & Baier, H. Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 132,2573–2585 (2005).

    Article  CAS  Google Scholar 

  42. Hoffmann,E.M., Zangwill,L.M., Crowston,J.G. & Weinreb,R.N. Optic disk size and glaucoma.Surv. Ophthalmol. 52,32–49 (2007).

    Article  Google Scholar 

  43. Williams,R.W., Strom,R.C. & Goldowitz,D. Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11.J. Neurosci. 18,138–146 (1998).

    Article  CAS  Google Scholar 

  44. Macgregor,S. et al.Genome-wide association identifies ATOH7 as a major gene determining human optic disc size.Hum. Mol. Genet. 19,2716–2724 (2010).

    Article  CAS  Google Scholar 

  45. Ramdas,W.D. et al.A genome-wide association study of optic disc parameters.PLoS Genet. 6,e1000978 (2010).

    Article  Google Scholar 

  46. Frankel,N. et al.Phenotypic robustness conferred by apparently redundant transcriptional enhancers.Nature 466,490–493 (2010).

    Article  CAS  Google Scholar 

  47. Perry,M.W., Boettiger,A.N., Bothma,J.P. & Levine,M. Shadow enhancers foster robustness ofDrosophila gastrulation. Curr. Biol. 20,1562–1567 (2010).

    Article  CAS  Google Scholar 

  48. Prasov,L. & Glaser,T. Math5 confers multipotency in fate-restricted post-mitotic retinal precursors.Invest. Ophthal. Vis. Sci. 50,1310 (2009).

    Google Scholar 

  49. Kleinjan,D.A. & van Heyningen,V. Long-range control of gene expression: emerging mechanisms and disruption in disease.Am. J. Hum. Genet. 76,8–32 (2005).

    Article  CAS  Google Scholar 

  50. Hufnagel,R.B., Riesenberg,A.N., Saul,S.M. & Brown,N.L. Conserved regulation of Math5 and Math1 revealed by Math5-GFP transgenes.Mol. Cell. Neurosci. 36,435–448 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Swaroop for facilitating this collaborative project, A. Aledavood for logistical support and encouragement, H. Parmar, J. Trobe and E. Oliver for help interpreting MRI studies, L. Prasov for assistance with mouse tissue cDNAs and retinal dissections, J. Johnson for pBGn-Cherry plasmid DNA, N. Brown for Math5-GFP transgenic mice, I. Masai forath5:GFP transgenic fish, M. Pihalja and M. Chiang for flow cytometry advice, S. Philips and T. Masud for screening candidate genes, S. Dagenais and R. Lyons for SNP genotyping analysis, S. Barolo, N. Brown, L. Prasov, C. Chou, M. Meisler and B. Link for helpful suggestions, and to T. Saunders, M. van Keuren and the University of Michigan transgenic animal, flow cytometry and DNA sequencing cores for technical support. We are profoundly grateful to NCRNA family members for their involvement and dedication to this study over many years. The research was funded by grants from the Glaucoma Foundation and the University of Michigan Center for Genetics in Health and Medicine to T.G., and from the US National Institutes of Health to T.G. (EY14259), D.G. (EY18132) and J.A.B. (T32 EY13934).

Author information

Authors and Affiliations

Authors

Contributions

N.M.G. and M.M. collected clinical data. N.M.G., D.D.R., J.A.B. and T.G. performed genomic and functional experiments. D.G. developed and bred transgenic fish. N.M.G., D.D.R., J.A.B., D.G. and T.G. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Tom Glaser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–3 and Supplementary Note (PDF 905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiasvand, N., Rudolph, D., Mashayekhi, M. et al. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci 14, 578–586 (2011). https://doi.org/10.1038/nn.2798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing