Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons

A Corrigendum to this article was published on 22 November 2013

This article has been updated

Abstract

Many nematodes show a stage-specific behavior called nictation in which a worm stands on its tail and waves its head in three dimensions. Here we show that nictation is a dispersal behavior regulated by a specific set of neurons, the IL2 cells, in C. elegans. We established assays for nictation and showed that cholinergic transmission was required for nictation. Cell type–specific rescue experiments and genetic ablation experiments revealed that the IL2 ciliated head neurons were essential for nictation. Intact cilia in IL2 neurons, but not in other ciliated head neurons, were essential, as the restoration of the corresponding wild-type gene activity in IL2 neurons alone in cilia-defective mutants was sufficient to restore nictation. Optogenetic activation of IL2 neurons induced nictation, suggesting that signals from IL2 neurons are sufficient for nictation. Finally, we demonstrated that nictation is required for transmission of C. elegans to a new niche using flies as artificial carriers, suggesting a role of nictation as a dispersal and survival strategy under harsh conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of assays for nictation.
Figure 2: Acetylcholine neurotransmission is required for nictation.
Figure 3: IL2 neurons are required for nictation.
Figure 4: Intact cilia of IL2 neurons are required for nictation.
Figure 5: Activation of IL2 neurons induces nictation.

Similar content being viewed by others

Change history

  • 10 August 2012

    In the version of this article initially published, the average durations for N2, cha-1(n2411) and cha-1(p503) shown in Figure 2b were incorrect because the n-values used to calculate them included cases in which no nictation was observed. The error has been corrected in the HTML and PDF versions of the article.

  • 22 November 2013

    Nat. Neurosci. 15, 107–112 (2012); published online 13 November 2011; corrected after print 10 August 2012 In the version of this article initially published, the average durations for N2, cha-1(n2411) and cha-1(p503) shown in Figure 2b (white bars) were incorrect because the n-values used to calculate them included cases in which no nictation was observed:

References

  1. Reed, E.M. & Wallace, H.R. Leaping locomotion by an insect-parasitic nematode. Nature 206, 210–211 (1965).

    Article  Google Scholar 

  2. Campbell, J.F. & Gaugler, R. Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).

    Article  Google Scholar 

  3. Evans, A.A.F. & Perry, R.N. Survival strategies in nematodes. in The Organization of Nematodes (ed. Croll, N.A.) 383–424 (Academic, London, 1976).

  4. Croll, N.A. & Matthews, B.E. Biology of Nematodes (Blackie & Son, London, 1977).

  5. Park, S. et al. Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3, e2550 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee, R.Y., Sawin, E.R., Chalfie, M., Horvitz, H.R. & Avery, L. EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J. Neurosci. 19, 159–167 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sze, J.Y., Victor, M., Loer, C., Shi, Y. & Ruvkun, G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Loer, C.M. & Kenyon, C.J. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J. Neurosci. 13, 5407–5417 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kass, J., Jacob, T.C., Kim, P. & Kaplan, J.M. The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. J. Neurosci. 21, 9265–9272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rand, J.B. & Russell, R.L. Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 106, 227–248 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McIntire, S.L., Jorgensen, E. & Horvitz, H.R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Rand, J.B. Genetic analysis of the cha-1-unc-17 gene complex in Caenorhabditis. Genetics 122, 73–80 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peden, E.M. & Barr, M.M. The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans. Curr. Biol. 15, 394–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ouellet, J., Li, S. & Roy, R. Notch signalling is required for both dauer maintenance and recovery in C. elegans. Development 135, 2583–2592 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Conradt, B. & Horvitz, H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Chang, A.J., Chronis, N., Karow, D.S., Marletta, M.A. & Bargmann, C.I. A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol. 4, e274 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ward, S., Thomson, N., White, J.G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–337 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  20. Vowels, J.J. & Thomas, J.H. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130, 105–123 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, F., Wang, L.P., Boyden, E.S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Barrière, A. & Felix, M.A. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr. Biol. 15, 1176–1184 (2005).

    Article  PubMed  Google Scholar 

  23. Sudhaus, W. & Kuhne, R. Nematodes associated with Psychodidae: description of Rhabditis berolina sp. n. and redescription of R. dubia Bovien, 1937 (Nematoda: Rhabditidae), with biological and ecological notes, and a phylogenetic discussion. Nematologica 35, 305–320 (1989).

    Article  Google Scholar 

  24. Albert, P.S. & Riddle, D.L. Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. J. Comp. Neurol. 219, 461–481 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Fayyazuddin, A., Zaheer, M.A., Hiesinger, P.R. & Bellen, H.J. The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol. 4, e63 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yono, O. & Aonuma, H. Cholinergic neurotransmission from mechanosensory afferents to giant interneurons in the terminal abdominal ganglion of the cricket Gryllus bimaculatus. Zoolog. Sci. 25, 517–525 (2008).

    Article  PubMed  Google Scholar 

  27. Miller, M.W., Vu, E.T. & Krasne, F.B. Cholinergic transmission at the first synapse of the circuit mediating the crayfish lateral giant escape reaction. J. Neurophysiol. 68, 2174–2184 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Palikhova, T.A., Abramova, M.S. & Pivovarov, A.S. Cholinergic sensory inputs to command neurons in edible snail. Bull. Exp. Biol. Med. 142, 275–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Cassada, R.C. & Russell, R.L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326–342 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, J., Lewis, E.E., Carey, J.R., Caswell, H. & Caswell-Chen, E.P. The ecology and biodemography of Caenorhabditis elegans. Exp. Gerontol. 41, 1059–1065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sivasundar, A. & Hey, J. Population genetics of Caenorhabditis elegans: the paradox of low polymorphism in a widespread species. Genetics 163, 147–157 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrière, A. & Felix, M.A. Natural variation and population genetics of Caenorhabditis elegans. WormBook 2005 1–19, (2005).

    Google Scholar 

  33. Darwin, C. On the Origin of Species (Murray, London, 1859).

  34. Gittenberger, E., Groenenberg, D.S., Kokshoorn, B. & Preece, R.C. Biogeography: molecular trails from hitch-hiking snails. Nature 439, 409 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. MacQueen, A.J. et al. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol. Biol. Cell 16, 3247–3259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Golden, J.W. & Riddle, D.L. A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. J. Chem. Ecol. 10, 1265–1280 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Jeong, P.Y. et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Butcher, R.A., Fujita, M., Schroeder, F.C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Xia, Y. & Whitesides, G.M. Soft lithography. Angew. Chem. Int. Edn. Engl. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  41. Ramot, D., Johnson, B.E., Berry, T.L. Jr., Carnell, L. & Goodman, M.B. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mahoney, T.R., Luo, S. & Nonet, M.L. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat. Protoc. 1, 1772–1777 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Hobert, O. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32, 728–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was initiated when J.L. was at his sabbatical leave in M. Han's laboratory (University of Colorado at Boulder). The authors thank Y. Kohara (National Institute of Genetics, Japan) for cDNA clones, A. Fire (Stanford University) for vectors, the J. Yim laboratory and the C.K. Chung laboratory (Seoul National University) for providing flies for our experiment, A. Gottschalk (Goethe University) for the ChR2 plasmid, P. Sengupta (Brandeis University) for the daf-10 cDNA plasmid and the Caenorhabditis Genetics Center for C. elegans strains. This work was supported by Brain Research Center of the 21st Century Frontier Research Program, the World Class University program and Research Center for Functional Cellulomics. M.C. was supported by Hi Seoul Science Fellowship from the Seoul Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.L., M.C. and J.L. designed the study and wrote the paper; H.L., M.C. and D.L. performed experiments and analyzed the data; H.-s.K. performed the gauze test; H.H. and S.P. contributed to making the micro-dirt chip; H.-k.K. and Y.P. contributed to synthesizing pheromones. H.L. and M.C. contributed equally to the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Junho Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 and Supplementary Tables 1–5 (PDF 1446 kb)

Supplementary Movie 1

A movie showing a dauer nictating on cotton medical gauze. Scale bar, 200 μm. (WMV 1328 kb)

Supplementary Movie 2

A movie showing a dauer nictating on the micro-dirt chip. Scale bar, 100 μm. (WMV 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Choi, Mk., Lee, D. et al. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci 15, 107–112 (2012). https://doi.org/10.1038/nn.2975

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2975

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing