Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles

Abstract

Synaptotagmin I (syt1) is required for normal rates of synaptic vesicle endo- and exocytosis. However, whether the kinetic defects observed during endocytosis in Syt1 knockout neurons are secondary to defective exocytosis or whether syt1 directly regulates the rate of vesicle retrieval remains unknown. To address this question, we sought to dissociate these two activities. We uncoupled the function of syt1 in exo- and endocytosis in mouse neurons either by re-targeting the protein or via mutagenesis of its tandem C2 domains. The effect of these manipulations on exo- and endocytosis were analyzed using electrophysiology, in conjunction with optical imaging of the vesicle cycle. Our results indicate that syt1 is directly involved in endocytosis. Notably, either of the C2 domains of syt1, C2A or C2B, was able to function as a Ca2+ sensor for endocytosis. Thus, syt1 functions as a dual Ca2+ sensor for both endo- and exocytosis, potentially coupling these two components of the vesicle cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The plasma membrane–targeted cytoplasmic domain of syt1 rescues rapid synaptic vesicle exocytosis in syt1 knockout neurons.
Figure 2: GAP43-C2AB cannot rescue defective synaptic vesicle endocytosis in syt1 knockout neurons.
Figure 3: Ca2+-binding activity is required for syt1 to accelerate synaptic vesicle endocytosis.
Figure 4: Ca2+-independent synaptic vesicle endocytosis does not rely on syt1.
Figure 5: C2A and C2B are redundant Ca2+ sensors for endocytosis.
Figure 6: The C2A domain is capable of internalizing syt1 into newly retrieved synaptic vesicles.

Similar content being viewed by others

References

  1. Koh, T.W. & Bellen, H.J. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci. 26, 413–422 (2003).

    Article  CAS  Google Scholar 

  2. Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  Google Scholar 

  3. Zhang, J.Z., Davletov, B.A., Sudhof, T.C. & Anderson, R.G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78, 751–760 (1994).

    Article  CAS  Google Scholar 

  4. Haucke, V., Wenk, M.R., Chapman, E.R., Farsad, K. & De Camilli, P. Dual interaction of synaptotagmin with μ2- and α-adaptin facilitates clathrin-coated pit nucleation. EMBO J. 19, 6011–6019 (2000).

    Article  CAS  Google Scholar 

  5. Grass, I., Thiel, S., Honing, S. & Haucke, V. Recognition of a basic AP-2 binding motif within the C2B domain of synaptotagmin is dependent on multimerization. J. Biol. Chem. 279, 54872–54880 (2004).

    Article  CAS  Google Scholar 

  6. Walther, K., Diril, M.K., Jung, N. & Haucke, V. Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. Proc. Natl. Acad. Sci. USA 101, 964–969 (2004).

    Article  CAS  Google Scholar 

  7. Diril, M.K., Wienisch, M., Jung, N., Klingauf, J. & Haucke, V. Stonin 2 is an AP-2–dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev. Cell 10, 233–244 (2006).

    Article  CAS  Google Scholar 

  8. Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  CAS  Google Scholar 

  9. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    Article  CAS  Google Scholar 

  10. Nicholson-Tomishima, K. & Ryan, T.A. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. Proc. Natl. Acad. Sci. USA 101, 16648–16652 (2004).

    Article  CAS  Google Scholar 

  11. Poskanzer, K.E., Fetter, R.D. & Davis, G.W. Discrete residues in the C2b domain of synaptotagmin I independently specify endocytic rate and synaptic vesicle size. Neuron 50, 49–62 (2006).

    Article  CAS  Google Scholar 

  12. Neale, E.A., Bowers, L.M., Jia, M., Bateman, K.E. & Williamson, L.C. Botulinum neurotoxin A blocks synaptic vesicle exocytosis, but not endocytosis at the nerve terminal. J. Cell Biol. 147, 1249–1260 (1999).

    Article  CAS  Google Scholar 

  13. Neves, G., Gomis, A. & Lagnado, L. Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc. Natl. Acad. Sci. USA 98, 15282–15287 (2001).

    Article  CAS  Google Scholar 

  14. Wu, W., Xu, J., Wu, X.S. & Wu, L.G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25, 11676–11683 (2005).

    Article  CAS  Google Scholar 

  15. Balaji, J., Armbruster, M. & Ryan, T.A. Calcium control of endocytic capacity at a CNS synapse. J. Neurosci. 28, 6742–6749 (2008).

    Article  CAS  Google Scholar 

  16. Hosoi, N., Holt, M. & Sakaba, T. Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63, 216–229 (2009).

    Article  CAS  Google Scholar 

  17. Wu, X.S. et al. Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat. Neurosci. 12, 1003–1010 (2009).

    Article  CAS  Google Scholar 

  18. Hui, E., Johnson, C.P., Yao, J., Dunning, F.M. & Chapman, E.R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138, 709–721 (2009).

    Article  CAS  Google Scholar 

  19. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  20. Nishiki, T. & Augustine, G.J. Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J. Neurosci. 24, 6127–6132 (2004).

    Article  Google Scholar 

  21. Liu, H., Dean, C., Arthur, C.P., Dong, M. & Chapman, E.R. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. J. Neurosci. 29, 7395–7403 (2009).

    Article  CAS  Google Scholar 

  22. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  Google Scholar 

  23. Zhu, Y., Xu, J. & Heinemann, S.F. Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61, 397–411 (2009).

    Article  CAS  Google Scholar 

  24. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  Google Scholar 

  25. Fernández-Alfonso, T. & Ryan, T.A. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron 41, 943–953 (2004).

    Article  Google Scholar 

  26. Mani, M. et al. The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and re-availability at nerve terminals. Neuron 56, 1004–1018 (2007).

    Article  CAS  Google Scholar 

  27. Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  Google Scholar 

  28. Chicka, M.C., Hui, E., Liu, H. & Chapman, E.R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. Struct. Mol. Biol. 15, 827–835 (2008).

    Article  CAS  Google Scholar 

  29. Zhang, B. & Zelhof, A.C. Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Traffic 3, 452–460 (2002).

    Article  CAS  Google Scholar 

  30. Schmidt, A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133–141 (1999).

    Article  CAS  Google Scholar 

  31. Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117–1123 (2001).

    Article  CAS  Google Scholar 

  32. Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 102, 18664–18669 (2005).

    Article  CAS  Google Scholar 

  33. Walther, K. et al. Human stoned B interacts with AP-2 and synaptotagmin and facilitates clathrin-coated vesicle uncoating. EMBO Rep. 2, 634–640 (2001).

    Article  CAS  Google Scholar 

  34. Jung, N. et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2. J. Cell Biol. 179, 1497–1510 (2007).

    Article  CAS  Google Scholar 

  35. Stevens, C.F. & Sullivan, J.M. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron 39, 299–308 (2003).

    Article  CAS  Google Scholar 

  36. Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C(2)B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418, 340–344 (2002).

    Article  CAS  Google Scholar 

  37. Nishiki, T. & Augustine, G.J. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci. 24, 8542–8550 (2004).

    Article  CAS  Google Scholar 

  38. Mackler, J.M. & Reist, N.E. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions. J. Comp. Neurol. 436, 4–16 (2001).

    Article  CAS  Google Scholar 

  39. Marek, K.W. & Davis, G.W. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36, 805–813 (2002).

    Article  CAS  Google Scholar 

  40. Hui, E. et al. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis. Proc. Natl. Acad. Sci. USA 102, 5210–5214 (2005).

    Article  CAS  Google Scholar 

  41. Marks, B. & McMahon, H.T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).

    Article  CAS  Google Scholar 

  42. Cousin, M.A. & Robinson, P.J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 24, 659–665 (2001).

    Article  CAS  Google Scholar 

  43. Clayton, E.L., Evans, G.J. & Cousin, M.A. Activity-dependent control of bulk endocytosis by protein dephosphorylation in central nerve terminals. J. Physiol. (Lond.) 585, 687–691 (2007).

    Article  CAS  Google Scholar 

  44. Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA 92, 8328–8332 (1995).

    Article  CAS  Google Scholar 

  45. Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16, 195–205 (1996).

    Article  CAS  Google Scholar 

  46. Kuromi, H., Yoshihara, M. & Kidokoro, Y. An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae. Neurosci. Res. 27, 101–113 (1997).

    Article  CAS  Google Scholar 

  47. Goda, Y. & Stevens, C.F. Two components of transmitter release at a central synapse. Proc. Natl. Acad. Sci. USA 91, 12942–12946 (1994).

    Article  CAS  Google Scholar 

  48. Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci. 28, 10151–10166 (2008).

    Article  CAS  Google Scholar 

  49. Fernández-Alfonso, T., Kwan, R. & Ryan, T.A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186 (2006).

    Article  Google Scholar 

  50. Richards, D.A., Bai, J. & Chapman, E.R. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1–43 efflux from individual vesicles. J. Cell Biol. 168, 929–939 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Hui for providing constructs used for the electrophysiology experiments shown in Figure 3. We also thank M.B. Jackson, X. Lou and members of the Chapman laboratory for their comments on this manuscript. This study was supported by a grant from the US National Institutes of Health (MH 61876). J.Y. is supported by an American Heart Association postdoctoral fellowship (11POST5720016). S.E.K. was supported by an Epilepsy Foundation predoctoral fellowship (09PRE2060819). E.R.C. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., S.E.K. and E.R.C. designed the experiments. J.Y. conducted the electrophysiological and immunostaining experiments. S.E.K. and J.Y. conducted the pHluorin imaging experiments. F.M.D., S.E.K. and J.Y. conducted the molecular biology experiments. J.D.G. conducted the cell fractionation experiments. J.D.G. and J.Y. conducted the immunoblot experiments. J.Y., S.E.K. and E.R.C. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Edwin R Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Kwon, S., Gaffaney, J. et al. Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 15, 243–249 (2012). https://doi.org/10.1038/nn.3013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing