Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling

Abstract

Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs, progenitors, and, ultimately, neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, although a few endogenous factors are known to regulate neuronal differentiation. Astrocytes have been implicated, but their role in juxtacrine (that is, cell-cell contact dependent) signaling in NSC niches has not been investigated. We found that ephrin-B2 presented from rodent hippocampal astrocytes regulated neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies revealed a previously unknown role for ephrin-B2 in instructing neuronal differentiation. In addition, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activated β-catenin in vitro and in vivo independently of Wnt signaling and upregulated proneural transcription factors. Ephrin-B2+ astrocytes therefore promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo, SGZ type 2a NSCs, type 2b neuronal precursors and type 3 neuroblasts express EphB4, and hippocampal astrocytes express ephrin-B2.
Figure 2: Fc–ephrin-B2 promoted the neuronal differentiation of NSCs in vitro.
Figure 3: Intrahippocampal injection of Fc–ephrin-B2 increases neurogenesis in the SGZ.
Figure 4: Efnb2 RNAi decreases the proneuronal effect of hippocampus-derived astrocytes in vitro.
Figure 5: Efnb2 RNAi decreases neuronal differentiation of BrdU+ cells in the SGZ.
Figure 6: Lineage tracing of ephrin-B2–induced NSC differentiation.
Figure 7: Ephrin-B2 instructs neuronal differentiation by activating β-catenin independent of Wnt signaling.

Similar content being viewed by others

References

  1. Eriksson, P.S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  2. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  Google Scholar 

  3. Spalding, K.L., Bhardwaj, R.D., Buchholz, B.A., Druid, H. & Frisén, J. Retrospective birth dating of cells in humans. Cell 122, 133–143 (2005).

    Article  CAS  Google Scholar 

  4. Manganas, L.N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 (2007).

    Article  CAS  Google Scholar 

  5. Jessberger, S. et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J. Neurosci. 27, 9400–9407 (2007).

    Article  CAS  Google Scholar 

  6. Ekdahl, C.T., Claasen, J.-H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 100, 13632–13637 (2003).

    Article  CAS  Google Scholar 

  7. Tattersfield, A.S. et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 127, 319–332 (2004).

    Article  CAS  Google Scholar 

  8. Suh, H. et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528 (2007).

    Article  CAS  Google Scholar 

  9. Suh, H., Deng, W. & Gage, F.H. Signaling in adult neurogenesis. Annu. Rev. Cell Dev. Biol. 25, 253–275 (2009).

    Article  CAS  Google Scholar 

  10. Bonaguidi, M.A. et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155 (2011).

    Article  CAS  Google Scholar 

  11. Mira, H. et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7, 78–89 (2010).

    Article  CAS  Google Scholar 

  12. Ehm, O. et al. RBPJ-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J. Neurosci. 30, 13794–13807 (2010).

    Article  CAS  Google Scholar 

  13. Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456 (2010).

    Article  CAS  Google Scholar 

  14. Lai, K., Kaspar, B.K., Gage, F.H. & Schaffer, D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27 (2003).

    Article  CAS  Google Scholar 

  15. Jin, K. et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2, 175–183 (2003).

    Article  CAS  Google Scholar 

  16. Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 36, 827–835 (2004).

    Article  CAS  Google Scholar 

  17. Qu, Q. et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signaling to stimulate neural stem cell proliferation and self-renewal. Nat. Cell Biol. 12, 31–40 (2010).

    Article  CAS  Google Scholar 

  18. Gage, F.H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883 (1995).

    Article  CAS  Google Scholar 

  19. Barkho, B.Z. et al. Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev. 15, 407–421 (2006).

    Article  CAS  Google Scholar 

  20. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    Article  CAS  Google Scholar 

  21. Jacobs, S. et al. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc. Natl. Acad. Sci. USA 103, 3902–3907 (2006).

    Article  CAS  Google Scholar 

  22. Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  Google Scholar 

  23. Lie, D.-C. Wnt signaling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  Google Scholar 

  24. Pasquale, E.B. Eph receptor signaling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  25. Knöll, B. & Drescher, U. Ephrin-As as receptors in topographic projections. Trends Neurosci. 25, 145–149 (2002).

    Article  Google Scholar 

  26. Martínez, A. & Soriano, E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res. Brain Res. Rev. 49, 211–226 (2005).

    Article  Google Scholar 

  27. Xu, N.-J., Sun, S., Gibson, J.R. & Henkemeyer, M. A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat. Neurosci. 14, 1421–1429 (2011).

    Article  CAS  Google Scholar 

  28. Aoki, M., Yamashita, T. & Tohyama, M. EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase–dependent pathway. J. Biol. Chem. 279, 32643–32650 (2004).

    Article  CAS  Google Scholar 

  29. del Valle, K., Theus, M.H., Bethea, J.R., Liebl, D.J. & Ricard, J. Neural progenitors proliferation is inhibited by EphB3 in the developing subventricular zone. Int. J. Dev. Neurosci. 29, 9–14 (2011).

    Article  Google Scholar 

  30. Conover, J.C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091–1097 (2000).

    Article  CAS  Google Scholar 

  31. Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005).

    Article  CAS  Google Scholar 

  32. Chumley, M.J., Catchpole, T., Silvany, R.E., Kernie, S.G. & Henkemeyer, M. EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J. Neurosci. 27, 13481–13490 (2007).

    Article  CAS  Google Scholar 

  33. Hara, Y., Nomura, T., Yoshizaki, K., Frisén, J. & Osumi, N. Impaired hippocampal neurogenesis and vascular formation in ephrin-A5–deficient mice. Stem Cells 28, 974–983 (2010).

    CAS  PubMed  Google Scholar 

  34. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  Google Scholar 

  35. Battiste, J. et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134, 285–293 (2007).

    Article  CAS  Google Scholar 

  36. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  37. Kuwabara, T. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12, 1097–1105 (2009).

    Article  CAS  Google Scholar 

  38. Barrios, A. et al. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr. Biol. 13, 1571–1582 (2003).

    Article  CAS  Google Scholar 

  39. Batlle, E. et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    Article  CAS  Google Scholar 

  40. Kim, W.-Y. et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci. 12, 1390–1397 (2009).

    Article  CAS  Google Scholar 

  41. Stambolic, V. & Woodgett, J.R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem. J. 303, 701–704 (1994).

    Article  CAS  Google Scholar 

  42. Fuerer, C. & Nusse, R. Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS ONE 5, e9370 (2010).

    Article  Google Scholar 

  43. Elmi, M. et al. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol. Cell. Neurosci. 45, 121–131 (2010).

    Article  CAS  Google Scholar 

  44. Jiao, J.-W., Feldheim, D.A. & Chen, D.F. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc. Natl. Acad. Sci. USA 105, 8778–8783 (2008).

    Article  CAS  Google Scholar 

  45. Nomura, T., Göritz, C., Catchpole, T., Henkemeyer, M. & Frisén, J. EphB signaling controls lineage plasticity of adult neural stem cell niche cells. Cell Stem Cell 7, 730–743 (2010).

    Article  CAS  Google Scholar 

  46. Ables, J.L. et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J. Neurosci. 30, 10484–10492 (2010).

    Article  CAS  Google Scholar 

  47. Wu, H.-H. et al. Autoregulation of neurogenesis by GDF11. Neuron 37, 197–207 (2003).

    Article  CAS  Google Scholar 

  48. Aguirre, A., Rubio, M.E. & Gallo, V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467, 323–327 (2010).

    Article  CAS  Google Scholar 

  49. Picco, V., Hudson, C. & Yasuo, H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134, 1491–1497 (2007).

    Article  CAS  Google Scholar 

  50. Qin, X.F., An, D.S., Chen, I.S.Y. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA 100, 183–188 (2003).

    Article  CAS  Google Scholar 

  51. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  52. Yu, J.H. & Schaffer, D.V. Selection of novel vesicular stomatitis virus glycoprotein variants from a peptide insertion library for enhanced purification of retroviral and lentiviral vectors. J. Virol. 80, 3285–3292 (2006).

    Article  CAS  Google Scholar 

  53. Lim, K.-I., Klimczak, R., Yu, J.H. & Schaffer, D.V. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc. Natl. Acad. Sci. USA 107, 12475–12480 (2010).

    Article  CAS  Google Scholar 

  54. Greenberg, K.P., Geller, S.F., Schaffer, D.V. & Flannery, J.G. Targeted transgene expression in muller glia of normal and diseased retinas using lentiviral vectors. Invest. Ophthalmol. Vis. Sci. 48, 1844–1852 (2007).

    Article  Google Scholar 

  55. Lawlor, P.A., Bland, R.J., Mouravlev, A., Young, D. & During, M.J. Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol. Ther. 17, 1692–1702 (2009).

    Article  CAS  Google Scholar 

  56. Peltier, J., O'Neill, A. & Schaffer, D.V. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev. Neurobiol. 67, 1348–1361 (2007).

    Article  CAS  Google Scholar 

  57. Peltier, J., Agrawal, S., Robertson, M.J. & Schaffer, D.V. In vitro culture and analysis of adult hippocampal neural progenitors. Methods Mol. Biol. 621, 65–87 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Fletcher for his guidance in mouse breeding and genotyping. This research was supported by US National Institutes of Health grant EB007295, Lawrence Berkeley National Lab Laboratory Directed Research and Development grant 3668DS and California Institute of Regenerative Medicine training grant T1-00007.

Author information

Authors and Affiliations

Authors

Contributions

C.P. designed and executed the initial in vitro ephrin ligand studies. R.S.A. performed in vitro immunocytochemistry and A.C. performed in vivo immunohistochemistry. R.S.A. designed all of the ephrin-B2 in vivo gain-of-function and loss-of-function experiments, and A.C. and J.B. equally assisted in conducting the experiments. RNAi vectors were designed by R.S.A. and K.-I.L., cloned by K.-I.L. and P.S., and R.S.A. validated vectors experimentally and conducted in vitro RNAi and co-culture experiments. A.C. validated the expression of shRNA vectors in hippocampal astrocytes. R.S.A. conducted mouse breeding and designed and conducted fate mapping experiments with substantial input and assistance from A.C. A.C. conducted clonal analysis experiments, designed and conducted all of the experiments related to in vivo β-catenin activity studies, and analyzed tissue sample from both fate mapping and β-catenin activity studies. A.C. and C.P., and to a lesser extent R.S.A., executed the ephrin-B2, GSK3β S9A, β-catenin, Mash1 and NeuroD1 mechanistic studies. R.S.A. and A.C. performed statistical analysis. A.C. illustrated Supplementary Figure 8. R.S.A. and D.S. wrote the manuscript, with substantial input from A.C. D.V.S. supervised all aspects of this work and M.B. provided important scientific input and feedback.

Corresponding author

Correspondence to David V Schaffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 4409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashton, R., Conway, A., Pangarkar, C. et al. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 15, 1399–1406 (2012). https://doi.org/10.1038/nn.3212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing