Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained Hox5 gene activity is required for respiratory motor neuron development

Abstract

Respiration in mammals relies on the rhythmic firing of neurons in the phrenic motor column (PMC), a motor neuron group that provides the sole source of diaphragm innervation. Despite their essential role in breathing, the specific determinants of PMC identity and patterns of connectivity are largely unknown. We show that two Hox genes, Hoxa5 and Hoxc5, control diverse aspects of PMC development including their clustering, intramuscular branching, and survival. In mice lacking Hox5 genes in motor neurons, axons extend to the diaphragm, but fail to arborize, leading to respiratory failure. Genetic rescue of cell death fails to restore columnar organization and branching patterns, indicating these defects are independent of neuronal loss. Unexpectedly, late Hox5 removal preserves columnar organization but depletes PMC number and branches, demonstrating a continuous requirement for Hox function in motor neurons. These findings indicate that Hox5 genes orchestrate PMC development through deployment of temporally distinct wiring programs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcription factor expression in cervical motor neurons.
Figure 2: Hox and FoxP1 activities determine PMC neuron distribution.
Figure 3: Respiratory failure and PMC loss in Hox5MNΔ mice.
Figure 4: Fidelity of PMC axon projections in Hox5MNΔ mutants.
Figure 5: Loss of synaptic contacts between PMC neurons and diaphragms in Hox5MNΔ mice.
Figure 6: Preventing apoptosis fails to rescue diaphragm innervation in Hox5MNΔ mutants.
Figure 7: Late removal of Hox5 genes leads to PMC loss and reduced terminal branching.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Smith, J.C., Abdala, A.P., Rybak, I.A. & Paton, J.F. Structural and functional architecture of respiratory networks in the mammalian brainstem. Phil. Trans. R. Soc. Lond. B 364, 2577–2587 (2009).

    Article  Google Scholar 

  2. Allan, D.W. & Greer, J.J. Development of phrenic motoneuron morphology in the fetal rat. J. Comp. Neurol. 382, 469–479 (1997).

    Article  CAS  Google Scholar 

  3. Allan, D.W. & Greer, J.J. Embryogenesis of the phrenic nerve and diaphragm in the fetal rat. J. Comp. Neurol. 382, 459–468 (1997).

    Article  CAS  Google Scholar 

  4. Bruce, A. A Topographical atlas of the Spinal Cord (Williams & Norgate, London, 1901).

  5. Romanes, G.J. The development and significance of the cell columns in the ventral horn of the cervical and upper thoracic spinal cord of the rabbit. J. Anat. 76, 112–130 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shirasaki, R. & Pfaff, S.L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    Article  CAS  Google Scholar 

  7. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  8. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  Google Scholar 

  9. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    Article  CAS  Google Scholar 

  10. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    Article  CAS  Google Scholar 

  11. Dasen, J.S., Liu, J.P. & Jessell, T.M. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425, 926–933 (2003).

    Article  CAS  Google Scholar 

  12. Dasen, J.S., Tice, B.C., Brenner-Morton, S. & Jessell, T.M. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123, 477–491 (2005).

    Article  CAS  Google Scholar 

  13. Jung, H. et al. Global control of motor neuron topography mediated by the repressive actions of a single Hox gene. Neuron 67, 781–796 (2010).

    Article  CAS  Google Scholar 

  14. Dasen, J.S., De Camilli, A., Wang, B., Tucker, P.W. & Jessell, T.M. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134, 304–316 (2008).

    Article  CAS  Google Scholar 

  15. Rousso, D.L., Gaber, Z.B., Wellik, D., Morrisey, E.E. & Novitch, B.G. Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 59, 226–240 (2008).

    Article  CAS  Google Scholar 

  16. Goshgarian, H.G. & Rafols, J.A. The phrenic nucleus of th albino rat: a correlative HRP and Golgi study. J. Comp. Neurol. 201, 441–456 (1981).

    Article  CAS  Google Scholar 

  17. Sharma, K., Leonard, A.E., Lettieri, K. & Pfaff, S.L. Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature 406, 515–519 (2000).

    Article  CAS  Google Scholar 

  18. Stolt, C.C. et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev. Cell 11, 697–709 (2006).

    Article  CAS  Google Scholar 

  19. Bermingham, J.R. Jr. et al. Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev. 10, 1751–1762 (1996).

    Article  CAS  Google Scholar 

  20. Dillon, A.K. et al. Molecular control of spinal accessory motor neuron/axon development in the mouse spinal cord. J. Neurosci. 25, 10119–10130 (2005).

    Article  CAS  Google Scholar 

  21. Sürmeli, G., Akay, T., Ippolito, G.C., Tucker, P.W. & Jessell, T.M. Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147, 653–665 (2011).

    Article  Google Scholar 

  22. Aubin, J., Lemieux, M., Tremblay, M., Berard, J. & Jeannotte, L. Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev. Biol. 192, 432–445 (1997).

    Article  CAS  Google Scholar 

  23. Tabariès, S., Lemieux, M., Aubin, J. & Jeannotte, L. Comparative analysis of Hoxa5 allelic series. Genesis 45, 218–228 (2007).

    Article  Google Scholar 

  24. Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    Article  CAS  Google Scholar 

  25. Dessaud, E., Salaun, D., Gayet, O., Chabbert, M. & deLapeyriere, O. Identification of lynx2, a novel member of the ly-6/neurotoxin superfamily, expressed in neuronal subpopulations during mouse development. Mol. Cell. Neurosci. 31, 232–242 (2006).

    Article  CAS  Google Scholar 

  26. GrandPré, T., Nakamura, F., Vartanian, T. & Strittmatter, S.M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).

    Article  Google Scholar 

  27. Chen, H. et al. Identification of transcriptional targets of HOXA5. J. Biol. Chem. 280, 19373–19380 (2005).

    Article  CAS  Google Scholar 

  28. Mi, R., Chen, W. & Hoke, A. Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc. Natl. Acad. Sci. USA 104, 4664–4669 (2007).

    Article  CAS  Google Scholar 

  29. Sun, W., Gould, T.W., Vinsant, S., Prevette, D. & Oppenheim, R.W. Neuromuscular development after the prevention of naturally occurring neuronal death by Bax deletion. J. Neurosci. 23, 7298–7310 (2003).

    Article  CAS  Google Scholar 

  30. Misgeld, T. et al. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36, 635–648 (2002).

    Article  CAS  Google Scholar 

  31. Agalliu, D., Takada, S., Agalliu, I., McMahon, A.P. & Jessell, T.M. Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 61, 708–720 (2009).

    Article  CAS  Google Scholar 

  32. Livet, J. et al. ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools. Neuron 35, 877–892 (2002).

    Article  CAS  Google Scholar 

  33. Haase, G. et al. GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35, 893–905 (2002).

    Article  CAS  Google Scholar 

  34. Burgess, R.W., Jucius, T.J. & Ackerman, S.L. Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J. Neurosci. 26, 5756–5766 (2006).

    Article  CAS  Google Scholar 

  35. Woldeyesus, M.T. et al. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev. 13, 2538–2548 (1999).

    Article  CAS  Google Scholar 

  36. Feng, G. et al. Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron 25, 295–306 (2000).

    Article  CAS  Google Scholar 

  37. Jaworski, A. & Tessier-Lavigne, M. Autocrine/juxtaparacrine regulation of axon fasciculation by Slit-Robo signaling. Nat. Neurosci. 15, 367–369 (2012).

    Article  CAS  Google Scholar 

  38. Weiner, J.A. et al. Axon fasciculation defects and retinal dysplasias in mice lacking the immunoglobulin superfamily adhesion molecule BEN/ALCAM/SC1. Mol. Cell. Neurosci. 27, 59–69 (2004).

    Article  CAS  Google Scholar 

  39. Petrinovic, M.M. et al. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development 137, 2539–2550 (2010).

    Article  CAS  Google Scholar 

  40. De Marco Garcia, N.V. & Jessell, T.M. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 57, 217–231 (2008).

    Article  CAS  Google Scholar 

  41. Oppenheim, R.W., Bursztajn, S. & Prevette, D. Cell death of motoneurons in the chick embryo spinal cord. XI. Acetylcholine receptors and synaptogenesis in skeletal muscle following the reduction of motoneuron death by neuromuscular blockade. Development 107, 331–341 (1989).

    CAS  PubMed  Google Scholar 

  42. Glebova, N.O. & Ginty, D.D. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci. 24, 743–751 (2004).

    Article  CAS  Google Scholar 

  43. Tripodi, M., Stepien, A.E. & Arber, S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 (2011).

    Article  CAS  Google Scholar 

  44. Bouvier, J. et al. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat. Neurosci. 13, 1066–1074 (2010).

    Article  CAS  Google Scholar 

  45. Caubit, X. et al. Teashirt 3 regulates development of neurons involved in both respiratory rhythm and airflow control. J. Neurosci. 30, 9465–9476 (2010).

    Article  CAS  Google Scholar 

  46. Rose, M.F. et al. Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 64, 341–354 (2009).

    Article  CAS  Google Scholar 

  47. Iizuka, M. Rostrocaudal distribution of spinal respiratory motor activity in an in vitro neonatal rat preparation. Neurosci. Res. 50, 263–269 (2004).

    Article  Google Scholar 

  48. Smith, J.C., Greer, J.J., Liu, G.S. & Feldman, J.L. Neural mechanisms generating respiratory pattern in mammalian brain stem–spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J. Neurophysiol. 64, 1149–1169 (1990).

    Article  CAS  Google Scholar 

  49. Lowell, B.B., Olson, D. & Yu, J. Development and phenotype of ChAT-IRES-Cre mice. MGI Direct Data Submission <http://www.informatics.jax.org/reference/J:114556> (2006).

  50. McIntyre, D.C. et al. Hox patterning of the vertebrate rib cage. Development 134, 2981–2989 (2007).

    Article  CAS  Google Scholar 

  51. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  Google Scholar 

  52. Hallock, P.T. et al. Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev. 24, 2451–2461 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Henderson, K. Kanning and I. Lieberam for discussions and sharing unpublished observations, M. Baek, H. Jung and C. Catela for comments on the manuscript, and P. Hallock and S. Burden for assistance with diaphragm preparations. L.J. is supported by a grant from the Canadian Institutes of Health Research (MOP-15139). J.S.D. is supported by grants from the McKnight Foundation, Alfred P. Sloan, Project ALS, NYSTEM, Howard Hughes Medical Institute and the US National Institutes of Health (R01 NS062822).

Author information

Authors and Affiliations

Authors

Contributions

P.P. performed all of the experiments except the Hoxc6−/− and Hb9Foxp1 analyses, which were performed by J.S.D. C.W. provided technical assistance with in situ experiments and serial sectioning, J.A. performed lung histology, L.J. provided the Hoxa5loxP/loxP mouse line, and P.P. and J.S.D. designed the study, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Jeremy S Dasen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philippidou, P., Walsh, C., Aubin, J. et al. Sustained Hox5 gene activity is required for respiratory motor neuron development. Nat Neurosci 15, 1636–1644 (2012). https://doi.org/10.1038/nn.3242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing