Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mTORC2 controls actin polymerization required for consolidation of long-term memory

This article has been updated

Abstract

A major goal of biomedical research is the identification of molecular and cellular mechanisms that underlie memory storage. Here we report a previously unknown signaling pathway that is necessary for the conversion from short- to long-term memory. The mammalian target of rapamycin (mTOR) complex 2 (mTORC2), which contains the regulatory protein Rictor (rapamycin-insensitive companion of mTOR), was discovered only recently and little is known about its function. We found that conditional deletion of Rictor in the postnatal murine forebrain greatly reduced mTORC2 activity and selectively impaired both long-term memory (LTM) and the late phase of hippocampal long-term potentiation (L-LTP). We also found a comparable impairment of LTM in dTORC2-deficient flies, highlighting the evolutionary conservation of this pathway. Actin polymerization was reduced in the hippocampus of mTORC2-deficient mice and its restoration rescued both L-LTP and LTM. Moreover, a compound that promoted mTORC2 activity converted early LTP into late LTP and enhanced LTM. Thus, mTORC2 could be a therapeutic target for the treatment of cognitive dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L-LTP, but not E-LTP, is impaired in mTORC2-deficient slices.
Figure 2: Long-term, but not short-term, fear memory is impaired in mTORC2-deficient mice.
Figure 3: In TORC2-deficient Drosophila, long-term spaced memory (but not massed) is impaired.
Figure 4: Actin dynamics, Rac1-GTPase activity and signaling are impaired in CA1 of Rictor fb-KO mice.
Figure 5: Restoring actin polymerization rescues the impaired L-LTP and contextual LTM caused by mTORC2 deficiency.
Figure 6: A-443654 promotes mTORC2 activity, actin polymerization and facilitates L-LTP in wild-type mice, but not in mTORC2-deficient mice.
Figure 7: A-443654 selectively enhances LTM in wild-type mice, but not in mTORC2-deficient mice.

Similar content being viewed by others

Change history

  • 10 March 2013

    In the version of this article initially published online, acknowledgment of grant BCM IDDRC 5P30HD024064-23 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development to M.C.-M. was missing. The error has been corrected for the print, PDF and HTML versions of this article.

  • 10 March 2013

    In the version of this supplementary file originally posted online, in Supplementary Figure 11, the wrong images were provided for total S6K for Fig. 1a, β-actin for Figures 2a and 3a, actin (bottom) for Fig. 5a and p-Akt for Figure 6a, and the panels corresponding to Figures 6a, 6b, 6d and 6e were mislabeled 5b, 5c, 5d and 5e, respectively. The errors have been corrected in this file as of 10 March 2013.

References

  1. Kandel, E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. McGaugh, J.L. Memory–a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Costa-Mattioli, M., Sossin, W.S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, S.H. & Morris, R.G. Hippocampal-neocortical interactions in memory formation, consolidation and reconsolidation. Annu. Rev. Psychol. 61, 49–79 C1–4 (2010).

    Article  PubMed  Google Scholar 

  5. Cingolani, L.A. & Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lamprecht, R. & LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lynch, G., Rex, C.S. & Gall, C.M. LTP consolidation: substrates, explanatory power and functional significance. Neuropharmacology 52, 12–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Guertin, D.A. & Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Wullschleger, S., Loewith, R. & Hall, M.N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, X.M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Oh, W.J. & Jacinto, E. mTOR complex 2 signaling and functions. Cell Cycle 10, 2305–2316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guertin, D.A. et al. Ablation in mice of the mTORC components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Shiota, C., Woo, J.T., Lindner, J., Shelton, K.D. & Magnuson, M.A. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev. Cell 11, 583–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Carson, R.P., Fu, C., Winzenburger, P. & Ess, K.C. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum. Mol. Genet. 22, 140–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Siuta, M.A. et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol. 8, e1000393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazei-Robison, M.S. et al. Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72, 977–990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Griffin, R.J. et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J. Neurochem. 93, 105–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Humbert, S. et al. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Malagelada, C., Jin, Z.H. & Greene, L.A. RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J. Neurosci. 28, 14363–14371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meikle, L. et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28, 5422–5432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siarey, R.J. et al. Altered signaling pathways underlying abnormal hippocampal synaptic plasticity in the Ts65Dn mouse model of Down syndrome. J. Neurochem. 98, 1266–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Dragatsis, I. & Zeitlin, S. CaMKIIalpha-Cre transgene expression and recombination patterns in the mouse brain. Genesis 26, 133–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tsien, J.Z. et al. Subregion- and cell type–restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Morris, R.G., Garrud, P., Rawlins, J.N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Hietakangas, V. & Cohen, S.M. Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev. 21, 632–637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Tully, T., Preat, T., Boynton, S.C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Heasman, S.J. & Ridley, A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Tolias, K.F. et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Holzinger, A. Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol. Biol. 586, 71–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Han, E.K. et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 26, 5655–5661 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kopec, C.D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L.Y., Rex, C.S., Casale, M.S., Gall, C.M. & Lynch, G. Changes in synaptic morphology accompany actin signaling during LTP. J. Neurosci. 27, 5363–5372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, C.H. & Lisman, J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kramár, E.A., Lin, B., Rex, C.S., Gall, C.M. & Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA 103, 5579–5584 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krucker, T., Siggins, G.R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA 97, 6856–6861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J. & Radulovic, J. Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lamprecht, R., Farb, C.R. & LeDoux, J.E. Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex. Neuron 36, 727–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Mantzur, L., Joels, G. & Lamprecht, R. Actin polymerization in lateral amygdala is essential for fear memory formation. Neurobiol. Learn. Mem. 91, 85–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element–binding protein. Cell 79, 59–68 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Costa-Mattioli, M. et al. eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olson, E.N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11, 353–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van Horck, F.P. & Holt, C.E. A cytoskeletal platform for local translation in axons. Sci. Signal. 1, pe11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Choe, G. et al. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 63, 2742–2746 (2003).

    CAS  PubMed  Google Scholar 

  49. Tsai, V. et al. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb. Cortex published online, doi:10.1093/cercor/bhs310 (18 October 2012).

  50. Zhou, J. et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29, 1773–1783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoica, L. et al. Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc. Natl. Acad. Sci. USA 108, 3791–3796 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhu, P.J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon gamma–mediated disinhibition. Cell 147, 1384–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shamah, S.M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Zeng, L.H. et al. Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J. Neurosci. 27, 11604–11613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferris, J., Ge, H., Liu, L. & Roman, G. G(o) signaling is required for Drosophila associative learning. Nat. Neurosci. 9, 1036–1040 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Magnuson (Vanderbilt University), I. Dragatsis (University of Tennessee) and K. Tolias (Baylor College of Medicine) who generously provided RictorloxP/loxP mice, Camk2a-Cre mice and the Tiam1 constructs, respectively. We also thank A. Placzek and W. Sossin for comments on an early version of the manuscript. This work was supported by grants to M.C.-M. (National Institute of Mental Health grant MH 096816, National Institute of Neurological Disorders and Stroke grant NS 076708, Searle award grant 09-SSP-211, Whitehall award, grants from the George and Cynthia Mitchell Foundation, and Eunice Kennedy Shriver National Institute of Child Health & Human Development BCM IDDRC 5P30HD024064-23) and G.R. (US National Institutes of Health grant MH091305 and a Texas Norman Hackerman Advanced Research Program award).

Author information

Authors and Affiliations

Authors

Contributions

W.H., P.J.Z. and M.C.-M. conceived and designed the experiments. W.H. performed the behavioral, molecular and spine density experiments. P.J.Z. performed the electrophysiology experiments. H.Z. performed the Nissl staining experiments. G.R. and S.Z. performed and analyzed the Drosophila behavioral experiments. All of the authors discussed the results and commented on the manuscript. M.C.-M. wrote the manuscript with input from W.H., G.R., P.J.Z. and K.K.

Corresponding author

Correspondence to Mauro Costa-Mattioli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 4456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Zhu, P., Zhang, S. et al. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16, 441–448 (2013). https://doi.org/10.1038/nn.3351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing