Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation

Abstract

Induction of histone acetylation in the nucleus accumbens (NAc), a key brain reward region, promotes cocaine-induced alterations in gene expression. Histone deacetylases (HDACs) tightly regulate the acetylation of histone tails, but little is known about the functional specificity of different HDAC isoforms in the development and maintenance of cocaine-induced plasticity, and previous studies of HDAC inhibitors report conflicting effects on cocaine-elicited behavioral adaptations. Here we demonstrate that specific and prolonged blockade of HDAC1 in NAc of mice increased global levels of histone acetylation, but also induced repressive histone methylation and antagonized cocaine-induced changes in behavior, an effect mediated in part through a chromatin-mediated suppression of GABAA receptor subunit expression and inhibitory tone on NAc neurons. Our findings suggest a new mechanism by which prolonged and selective HDAC inhibition can alter behavioral and molecular adaptations to cocaine and inform the development of therapeutics for cocaine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HDAC1 in NAc regulates locomotor responses to cocaine.
Figure 2: Chronic MS-275 infusion into NAc blocks locomotor responses to cocaine and alters repressive histone methylation.
Figure 3: HDAC binding to KMT gene promoters after repeated cocaine.
Figure 4: Chronic MS-275 infusion prevents cocaine-induced changes in GABAA receptor subunit expression and GABAergic tone in NAc.

Similar content being viewed by others

References

  1. Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).

    Article  CAS  Google Scholar 

  2. Levine, A.A. et al. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc. Natl. Acad. Sci. USA 102, 19186–19191 (2005).

    Article  CAS  Google Scholar 

  3. Kalda, A., Heidmets, L.T., Shen, H.Y., Zharkovsky, A. & Chen, J.F. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res. 181, 76–84 (2007).

    Article  CAS  Google Scholar 

  4. Shen, H.Y. et al. Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience 157, 644–655 (2008).

    Article  CAS  Google Scholar 

  5. Renthal, W. et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62, 335–348 (2009).

    Article  CAS  Google Scholar 

  6. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  Google Scholar 

  7. Malvaez, M., Mhillaj, E., Matheos, D.P., Palmery, M. & Wood, M.A. CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J. Neurosci. 31, 16941–16948 (2011).

    Article  CAS  Google Scholar 

  8. Levine, A. et al. Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Sci. Transl. Med. 3, 107ra109 (2011).

    Article  Google Scholar 

  9. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  10. Schroeder, F.A. et al. Drug-induced activation of dopamine D1 receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology 33, 2981–2992 (2008).

    Article  CAS  Google Scholar 

  11. Kim, W.Y., Kim, S. & Kim, J.H. Chronic microinjection of valproic acid into the nucleus accumbens attenuates amphetamine-induced locomotor activity. Neurosci. Lett. 432, 54–57 (2008).

    Article  CAS  Google Scholar 

  12. Romieu, P. et al. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J. Neurosci. 28, 9342–9348 (2008).

    Article  CAS  Google Scholar 

  13. Sun, J. et al. The effects of sodium butyrate, an inhibitor of histone deacetylase, on the cocaine- and sucrose-maintained self-administration in rats. Neurosci. Lett. 441, 72–76 (2008).

    Article  CAS  Google Scholar 

  14. Wang, L. et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35, 913–928 (2010).

    Article  CAS  Google Scholar 

  15. Malvaez, M., Sanchis-Segura, C., Vo, D., Lattal, K.M. & Wood, M.A. Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol. Psychiatry 67, 36–43 (2010).

    Article  CAS  Google Scholar 

  16. Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    Article  CAS  Google Scholar 

  17. Broide, R.S. et al. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci. 31, 47–58 (2007).

    Article  CAS  Google Scholar 

  18. Montgomery, R.L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21, 1790–1802 (2007).

    Article  CAS  Google Scholar 

  19. Montgomery, R.L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  CAS  Google Scholar 

  20. Pierce, R.C. & Kalivas, P.W. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Brain Res. Rev. 25, 192–216 (1997).

    Article  CAS  Google Scholar 

  21. Badiani, A. & Robinson, T.E. Drug-induced neurobehavioral plasticity: the role of environmental context. Behav. Pharmacol. 15, 327–339 (2004).

    Article  CAS  Google Scholar 

  22. Khan, N. et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409, 581–589 (2008).

    Article  CAS  Google Scholar 

  23. Maze, I. et al. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc. Natl. Acad. Sci. USA 108, 3035–3040 (2011).

    Article  CAS  Google Scholar 

  24. Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  Google Scholar 

  25. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  Google Scholar 

  26. Dixon, C.I. et al. Cocaine effects on mouse incentive-learning and human addiction are linked to alpha2 subunit-containing GABAA receptors. Proc. Natl. Acad. Sci. USA 107, 2289–2294 (2010).

    Article  CAS  Google Scholar 

  27. Gregoretti, I.V., Lee, Y.M. & Goodson, H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31 (2004).

    Article  CAS  Google Scholar 

  28. Fischer, A., Sananbenesi, F., Mungenast, A. & Tsai, L.H. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol. Sci. 31, 605–617 (2010).

    Article  CAS  Google Scholar 

  29. Guan, J.S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    Article  CAS  Google Scholar 

  30. McQuown, S.C. et al. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 31, 764–774 (2011).

    Article  CAS  Google Scholar 

  31. Bahari-Javan, S. et al. HDAC1 regulates fear extinction in mice. J. Neurosci. 32, 5062–5073 (2012).

    Article  CAS  Google Scholar 

  32. Kurita, M. et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat. Neurosci. 15, 1245–1254 (2012).

    Article  CAS  Google Scholar 

  33. Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21, 2672–2681 (2002).

    Article  CAS  Google Scholar 

  34. White, F.J., Hu, X.T., Zhang, X.F. & Wolf, M.E. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445–454 (1995).

    CAS  PubMed  Google Scholar 

  35. Pierce, R.C., Bell, K., Duffy, P. & Kalivas, P.W. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550–1560 (1996).

    Article  CAS  Google Scholar 

  36. Churchill, L., Swanson, C.J., Urbina, M. & Kalivas, P.W. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397–2403 (1999).

    Article  CAS  Google Scholar 

  37. Boudreau, A.C. & Wolf, M.E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005).

    Article  CAS  Google Scholar 

  38. Kauer, J.A. & Malenka, R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007).

    Article  CAS  Google Scholar 

  39. Brown, T.E. et al. A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J. Neurosci. 31, 8163–8174 (2011).

    Article  CAS  Google Scholar 

  40. Kelz, M.B. et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999).

    Article  CAS  Google Scholar 

  41. Covington, H.E. III et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71, 656–670 (2011).

    Article  CAS  Google Scholar 

  42. Lee, K.W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl. Acad. Sci. USA 103, 3399–3404 (2006).

    Article  CAS  Google Scholar 

  43. Bertran-Gonzalez, J. et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci. 28, 5671–5685 (2008).

    Article  CAS  Google Scholar 

  44. Lobo, M.K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    Article  CAS  Google Scholar 

  45. Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729–748 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Neve (Massachusetts Institute of Technology) for viral vectors and M. Baxter for statistical expertise. This work was supported by grants from the US National Institute on Drug Abuse and National Institute of Mental Health (E.J.N.) and the Canadian Institutes for Health Research (P.J.K.; MFE 90086).

Author information

Authors and Affiliations

Authors

Contributions

P.J.K., I.M. and E.J.N. designed research; P.J.K., J.F., A.J.R., A.B., D.C. and D.M.D.-W. performed research; P.J.K., A.J.R., D.C. and A.B. analyzed data; R.B.-D. and E.N.O. contributed mutant mice; S.J.H. provided reagents; E.M. generated viral vectors; M.-H.H. contributed to data interpretation; P.J.K. and E.J.N. wrote the paper.

Corresponding author

Correspondence to Eric J Nestler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, P., Feng, J., Robison, A. et al. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16, 434–440 (2013). https://doi.org/10.1038/nn.3354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing