Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exome sequencing to identify de novo mutations in sporadic ALS trios

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic risk factors, we assessed the role of de novo mutations in ALS by sequencing the exomes of 47 ALS patients and both of their unaffected parents (n = 141 exomes). We found that amino acid–altering de novo mutations were enriched in genes encoding chromatin regulators, including the neuronal chromatin remodeling complex (nBAF) component SS18L1 (also known as CREST). CREST mutations inhibited activity-dependent neurite outgrowth in primary neurons, and CREST associated with the ALS protein FUS. These findings expand our understanding of the ALS genetic landscape and provide a resource for future studies into the pathogenic mechanisms contributing to sporadic ALS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SS18L1 de novo mutation (Q388stop) identified in an ALS trio inhibits activity-dependent dendritic outgrowth.
Figure 2: Identification of an additional CREST variant in FALS case and interaction with FUS.

Similar content being viewed by others

References

  1. Andersen, P.M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

    CAS  PubMed  Google Scholar 

  2. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwiatkowski, T.J. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    CAS  PubMed  Google Scholar 

  5. Johnson, J.O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    CAS  PubMed  Google Scholar 

  7. Deng, H.X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, C.H. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Renton, A.E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    CAS  PubMed  Google Scholar 

  12. O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864–868 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Girard, S.L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    CAS  PubMed  Google Scholar 

  18. Vissers, L.E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    CAS  PubMed  Google Scholar 

  19. Alexander, M.D. et al. “True” sporadic ALS associated with a novel SOD-1 mutation. Ann. Neurol. 52, 680–683 (2002).

    CAS  PubMed  Google Scholar 

  20. Chiò, A. et al. A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol. Aging 32, e23–e26 (2011).

    Google Scholar 

  21. DeJesus-Hernandez, M. et al. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum. Mutat. 31, E1377–E1389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, D.W. et al. Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinformatics Chapter 13, 13.11 (2009).

    Google Scholar 

  23. Ryu, H. et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem. 93, 1087–1098 (2005).

    CAS  PubMed  Google Scholar 

  24. Rouaux, C. et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein–dependent mechanisms, but does not improve survival in an amyotrophic lateral sclerosis mouse model. J. Neurosci. 27, 5535–5545 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012).

    PubMed  Google Scholar 

  26. Cudkowicz, M.E. et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph. Lateral Scler. 10, 99–106 (2009).

    CAS  PubMed  Google Scholar 

  27. Gil, O.D., Zanazzi, G., Struyk, A.F. & Salzer, J.L. Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J. Neurosci. 18, 9312–9325 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van Horck, F.P., Lavazais, E., Eickholt, B.J., Moolenaar, W.H. & Divecha, N. Essential role of type I(alpha) phosphatidylinositol 4-phosphate 5-kinase in neurite remodeling. Curr. Biol. 12, 241–245 (2002).

    CAS  PubMed  Google Scholar 

  29. Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004).

    CAS  PubMed  Google Scholar 

  30. Qiu, Z. & Ghosh, A. A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60, 775–787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, J.I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).

    CAS  PubMed  Google Scholar 

  32. Kabashi, E. et al. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum. Mol. Genet. 19, 671–683 (2010).

    CAS  PubMed  Google Scholar 

  33. Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. & Crabtree, G.R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    CAS  PubMed  Google Scholar 

  34. Fujii, R. et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593 (2005).

    CAS  PubMed  Google Scholar 

  35. Cushman, M., Johnson, B.S., King, O.D., Gitler, A.D. & Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gitler, A.D. & Shorter, J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5, 179–187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. King, O.D., Gitler, A.D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Couthouis, J. et al. A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl. Acad. Sci. USA 108, 20881–20890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Couthouis, J. et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 2899–2911 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, H.J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Monroy, M.A. et al. Regulation of cAMP-responsive element–binding protein–mediated transcription by the SNF2/SWI-related protein, SRCAP. J. Biol. Chem. 276, 40721–40726 (2001).

    CAS  PubMed  Google Scholar 

  42. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    CAS  PubMed  Google Scholar 

  44. Tsurusaki, Y. et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat. Genet. 44, 376–378 (2012).

    CAS  PubMed  Google Scholar 

  45. Wolff, D. et al. In-frame deletion and missense mutations of the C-terminal helicase domain of SMARCA2 in three patients with Nicolaides-Baraitser syndrome. Mol. Syndromol. 2, 237–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Houdt, J.K. et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat. Genet. 44, 445–449 (2012).

    CAS  PubMed  Google Scholar 

  47. Hoyer, J. et al. Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability. Am. J. Hum. Genet. 90, 565–572 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Loe-Mie, Y. et al. SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Hum. Mol. Genet. 19, 2841–2857 (2010).

    CAS  PubMed  Google Scholar 

  49. Lule, D., Ludolph, A.C. & Ludolph, A.G. Neurodevelopmental and neurodegenerative diseases: is there a pathophysiological link? Attention-deficit/hyperactivity disorder and amyotrophic lateral sclerosis as examples. Med. Hypotheses 70, 1133–1138 (2008).

    CAS  PubMed  Google Scholar 

  50. Calvo, A.C. et al. Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice. PLoS ONE 7, e32632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hosack, D.A., Dennis, G. Jr., Sherman, B.T., Lane, H.C. & Lempicki, R.A. Identifying biological themes within lists of genes with EASE. Genome Biol. 4, R70 (2003).

    PubMed  PubMed Central  Google Scholar 

  55. Dufu, K. et al. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev. 24, 2043–2053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Folco, E.G., Lei, H., Hsu, J.L. & Reed, R. Small-scale nuclear extracts for functional assays of gene-expression machineries. J. Vis. Exp. 64, e4140 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a US National Institutes of Health Director's New Innovator Award 1DP2OD004417 (A.D.G.), grants from the US National Institutes of Health (1R01NS065317 to A.D.G., R01NS046789 to G.R.C. and 5U01NS062713 to N.J.M.) and the Department of Defense ALS Research Program (N.J.M.). A.D.G. received funding from the Biogen Idec ALS genome sequencing consortium. A.D.G. received funding from The Pew Charitable Trusts and the Rita Allen Foundation. G.R.C. receives funding from the Howard Hughes Medical Institute. A.D.G. and J.D.G. are supported by the Packard Center for ALS Research at Johns Hopkins. This work was also supported by the National Health and Medical Research Council of Australia (1004670, 511941) and the Motor Neurone Disease Research Institute of Australia.

Author information

Authors and Affiliations

Authors

Contributions

A.C. performed all of the exome sequencing and analysis. B.T.S. and A.J. performed the primary neuron experiments. B.T.S. performed co-immunoprecipitation experiments with direction from G.R.C. J.C., M.F. and A.R.R. performed Sanger sequencing and helped A.C. with exome sequencing. T.Y. and R.R. performed SS18L1-FUS physical association experiments. L.E. performed mass spectrometry analysis. N.J.M. and J.D.G. contributed ALS patient samples, with assistance from M.P. and C.K., and helped to design experiments. K.L.W., J.A.F., G.A.N. and I.P.B. contributed ALS patient samples and performed experiments to identify SS18L1 variants in Australian FALS pedigrees. O.D.K. performed prion-like domain analysis for SS18L1 and SS18. A.D.G. and A.C. wrote the manuscript with input from all of the authors.

Corresponding authors

Correspondence to Alessandra Chesi or Aaron D Gitler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–3 (PDF 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesi, A., Staahl, B., Jovičić, A. et al. Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci 16, 851–855 (2013). https://doi.org/10.1038/nn.3412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing