Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex

Abstract

The breakdown of attentional mechanisms after brain damage can have drastic behavioral consequences, as in patients suffering from spatial neglect. While much research has concentrated on impaired attention to targets contralateral to sites of brain damage, here we report the ipsilateral enhancement of visual attention after repetitive transcranial magnetic stimulation (rTMS) of parietal cortex at parameters known to reduce cortical excitability. Normal healthy subjects received rTMS (1 Hz, 10 mins) over right or left parietal cortex. Subsequently, detection of visual stimuli contralateral to the stimulated hemisphere was consistently impaired when stimuli were also present in the opposite hemifield, mirroring the extinction phenomenon commonly observed in neglect patients. Additionally, subjects' attention to ipsilateral targets improved significantly over normal levels. These results underline the potential of focal brain dysfunction to produce behavioral improvement and give experimental support to models of interhemispheric competition in the distributed brain network for spatial attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods.
Figure 2: Changes in correct stimulus detection after parietal rTMS.
Figure 3: Response vectors for baseline performance and after parietal TMS.
Figure 4: Schematic representation of a modified attentional gradient following parietal impairment (shown here for right impairment; transformed representation in red, baseline in black), resulting in potentially unequal performance changes at mirror-symmetric stimulus eccentricities (−x and x).

Similar content being viewed by others

References

  1. Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

    Article  CAS  Google Scholar 

  2. Nobre, A. C.et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120, 515–533 (1997).

    Article  Google Scholar 

  3. Vallar, G. Spatial hemineglect in humans. Trends. Cogn. Sci. 2, 87–97 (1998).

    Article  CAS  Google Scholar 

  4. Rushworth, M. F. S., Ellison, A. & Walsh, V. Complementary localization and lateralization of orienting and motor attention. Nat. Neurosci. 4, 656–661 (2001).

    Article  CAS  Google Scholar 

  5. Toga, A. W., Frackowiak, R. S. J. & Mazziotta, J. C. (eds). Special issue (issue 1, part 2): Action and Visio-Spatial Attention: Neurobiological Bases and Disorders. Neuroimage 14, 1–146 (2001).

    Article  Google Scholar 

  6. Kinsbourne, M. Hemi-neglect and hemisphere rivalry. Adv. Neurol. 18, 41–49 (1977).

    CAS  PubMed  Google Scholar 

  7. Kinsbourne, M. in Neurophysiological and Neuropsychological Aspects of Spatial Neglect (ed. Jeannerod, M.) 69–86 (North-Holland, Amsterdam, 1987).

    Book  Google Scholar 

  8. Kinsbourne, M. in Unilateral Neglect: Clinical and Experimental Studies (eds. Robertson, I. & Marshall, J.) 63–86 (Lawrence Erlbaum, Hove, UK, 1993).

    Google Scholar 

  9. Seyal, M., Ro, T. & Rafal, R. Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe. Ann. Neurol. 38, 264–267 (1995).

    Article  CAS  Google Scholar 

  10. Hilgetag, C. C., Kötter, R. & Young, M. P. Inter-hemispheric competition of sub-cortical structures is a crucial mechanism in paradoxical lesion effects and spatial neglect. Prog. Brain Res. 121, 121–141 (1999).

    Article  CAS  Google Scholar 

  11. Oliveri, M. et al. Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. Brain 122, 1731–1739 (1999).

    Article  Google Scholar 

  12. Hilgetag, C. C. Spatial neglect and paradoxical lesion effects in the cat—a model based on midbrain connectivity. Neurocomputing 32–33, 793–799 (2000).

    Article  Google Scholar 

  13. Smania, N. et al. The spatial distribution of visual attention in hemineglect and extinction patients. Brain 121, 1759–1770 (1998).

    Article  Google Scholar 

  14. Pascual-Leone, A., Bartres-Faz, D. & Keenan, J. P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions.' Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 1229–1238 (1999).

    Article  CAS  Google Scholar 

  15. Walsh, V. & Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1, 73–79 (2000).

    Article  CAS  Google Scholar 

  16. Chen, R. et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–1403 (1997).

    Article  CAS  Google Scholar 

  17. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 133, 425–430 (2000).

    Article  CAS  Google Scholar 

  18. Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    Article  CAS  Google Scholar 

  19. Mottaghy, F., Gangitano, M., Sparing, R., Krause, B. & Pascual-Leone, A. Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cereb. Cortex (in press).

  20. Theoret, H., Haque, J. & Pascual-Leone, A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci. Lett. (in press).

  21. Ferbert, A. et al. Interhemispheric inhibition of the human motor cortex. J. Physiol. (Lond.) 453, 525–546 (1992).

    Article  CAS  Google Scholar 

  22. Di Lazzaro, V. et al. Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp. Brain Res. 124, 520–524 (1999).

    Article  CAS  Google Scholar 

  23. Wassermann, E. M., Wedegaertner, F. R., Ziemann, U., George, M. S. & Chen, R. Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neurosci. Lett. 250, 141–144 (1998).

    Article  CAS  Google Scholar 

  24. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 111, 800–805 (2000).

    Article  CAS  Google Scholar 

  25. Boroojerdi, B., Prager, A., Muellbacher, W. & Cohen, L. G. Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology 54, 1529–1531 (2000).

    Article  CAS  Google Scholar 

  26. Pascual-Leone, A. et al. Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe. Neurology 44, 494–498 (1994).

    Article  CAS  Google Scholar 

  27. Fierro, B. et al. Contralateral neglect induced by right posterior parietal rTMS in healthy subjects. Neuroreport 11, 1519–1521 (2000).

    Article  CAS  Google Scholar 

  28. Karnath, H. O., Niemeier, M. & Dichgans, J. Space exploration in neglect. Brain 121, 2357–2367 (1998).

    Article  Google Scholar 

  29. Pouget, A. & Driver, J. Relating unilateral neglect to the neural coding of space. Curr. Opin. Neurobiol. 10, 242–249 (2000).

    Article  CAS  Google Scholar 

  30. Weintraub, S. & Mesulam, M. M. Right cerebral dominance in spatial attention. Further evidence based on ipsilateral neglect. Arch. Neurol. 44, 621–625 (1987).

    Article  CAS  Google Scholar 

  31. Jewell, G. & McCourt, M. E. Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38, 93–110 (2000).

    Article  CAS  Google Scholar 

  32. Fink, G. R., Driver, J., Rorden, C., Baldeweg, T. & Dolan, R. J. Neural consequences of competing stimuli in both visual hemifields: a physiological basis for visual extinction. Ann. Neurol. 47, 440–446 (2000).

    Article  CAS  Google Scholar 

  33. Vuilleumier, P., Hester, D., Assal, G. & Regli, F. Unilateral spatial neglect recovery after sequential strokes. Neurology 46, 184–189 (1996).

    Article  CAS  Google Scholar 

  34. Walsh, V., Ellison, A., Battelli, L. & Cowey, A. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proc. R. Soc. Lond. B Biol. Sci. 265, 537–543 (1998).

    Article  CAS  Google Scholar 

  35. Kapur, N. Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain 119, 1775–1790 (1996).

    Article  Google Scholar 

  36. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported in part by grants from the Wellcome Trust (C.C.H.), Canadian Institutes of Health Research (H.T.) and the US National Institute of Mental Health (RO1MH60734, RO1MH57980), and National Eye Institute (RO1EY12091) (A.P-L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus C. Hilgetag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgetag, C., Théoret, H. & Pascual-Leone, A. Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex. Nat Neurosci 4, 953–957 (2001). https://doi.org/10.1038/nn0901-953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0901-953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing