Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extracellular amyloid formation and associated pathology in neural grafts

Abstract

Amyloid precursor protein (APP) processing and the generation of β-amyloid peptide (Aβ) are important in the pathogenesis of Alzheimer's disease. Although this has been studied extensively at the molecular and cellular levels, much less is known about the mechanisms of amyloid accumulation in vivo. We transplanted transgenic APP23 and wild-type B6 embryonic neural cells into the neocortex and hippocampus of both B6 and APP23 mice. APP23 grafts into wild-type hosts did not develop amyloid deposits up to 20 months after grafting. In contrast, both transgenic and wild-type grafts into young transgenic hosts developed amyloid plaques as early as 3 months after grafting. Although largely diffuse in nature, some of the amyloid deposits in wild-type grafts were congophilic and were surrounded by neuritic changes and gliosis, similar to the amyloid-associated pathology previously described in APP23 mice. Our results indicate that diffusion of soluble Aβ in the extracellular space is involved in the spread of Aβ pathology, and that extracellular amyloid formation can lead to neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural grafting of APP23 tissue into B6 hosts.
Figure 2: APP and Aβ levels in APP23 grafts placed in B6 hosts.
Figure 3: Neural grafting of APP23 and B6 tissue into APP23 hosts.
Figure 4: Amyloid in B6 grafts.
Figure 5: Neural grafting of B6 tissue into thalamus and striatum of APP23 hosts.
Figure 6: Mechanism of amyloid formation in B6 grafts.
Figure 7: Amyloid pathology associated with congophilic amyloid plaques in B6 grafts.

Similar content being viewed by others

References

  1. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Geula, C. et al. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med. 4, 827–831 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Kane, M.D. et al. Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin, L.J., Pardo, C.A., Cork, L.C. & Price, D.L. Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am. J. Pathol. 145, 1358–1381 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hartmann, T. et al. Distinct sites of intracellular production for Alzheimer's disease Abeta40/42 amyloid peptides. Nat. Med. 3, 1016–1020 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Gouras, G.K. et al. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol. 156, 15–20 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walsh, D.M., Tseng, B.P., Rydel, R.E., Podlisny, M.B. & Selkoe, D.J. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 10831–10839 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bayer, T.A. et al. Key factors in Alzheimer's disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol. 11, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wirths, O. et al. Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 306, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. D'Andrea, M.R., Nagele, R.G., Wang, H.Y., Peterson, P.A. & Lee, D.H. Evidence that neurons accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 38, 120–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Richards, S.J. et al. Transplants of mouse trisomy 16 hippocampus provide a model of Alzheimer's disease neuropathology. Embo J. 10, 297–303 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holtzman, D.M. et al. Mouse model of neurodegeneration: atrophy of basal forebrain cholinergic neurons in trisomy 16 transplants. Proc. Natl. Acad. Sci. USA 89, 1383–1387 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mantione, J.R. et al. Human neurons that constitutively secrete Abeta do not induce Alzheimer's disease pathology following transplantation and long-term survival in the rodent brain. Brain Res. 671, 333–337 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Bayer, T.A., Fossgreen, A., Czech, C., Beyreuther, K. & Wiestler, O.D. Plaque formation in brain transplants exposed to human beta-amyloid precursor protein 695. Acta Neuropathol. (Berl.) 92, 130–137 (1996).

    Article  CAS  Google Scholar 

  17. Hsiao, K. et al. Correlative memory deficits, Abeta elevation and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94, 13287–13292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brandner, S. et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl. Acad. Sci. USA 93, 13148–13151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schenk, D. et al. Immunization with amyloid-beta attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Pfeifer, M. et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298, 1379 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Calhoun, M.E. et al. Neuron loss in APP transgenic mice. Nature 395, 755–756 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Qiu, W.Q. et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem. 273, 32730–32738 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Iwata, N. et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. 6, 143–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Clinton, R.J. Jr. & Ebner, F.F. Time course of neocortical graft innervation by AChE-positive fibers. J. Comp. Neurol. 277, 557–577 (1988).

    Article  PubMed  Google Scholar 

  27. Lazarov, O., Lee, M., Peterson, D.A. & Sisodia, S.S. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J. Neurosci. 22, 9785–9793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wirths, O. et al. Intraneuronal APP/A beta trafficking and plaque formation in beta-amyloid precursor protein and presenilin-1 transgenic mice. Brain Pathol. 12, 275–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Stalder, M. et al. Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am. J. Pathol. 154, 1673–1684 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phinney, A.L. et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19, 8552–8559 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boncristiano, S. et al. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. J. Neurosci. 22, 3234–3243 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bondolfi, L. et al. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J. Neurosci. 22, 515–522 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weller, R.O. Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J. Neuropathol. Exp. Neurol. 57, 885–894 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Shibata, M. et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489–1499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeMattos, R.B., Bales, K.R., Cummins, D.J., Paul, S.M. & Holtzman, D.M. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295, 2264–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Calhoun, M.E. et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl. Acad. Sci. USA 96, 14088–14093 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bi, X., Gall, C.M., Zhou, J. & Lynch, G. Uptake and pathogenic effects of amyloid beta peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 112, 827–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Nagele, R.G., D'Andrea, M.R., Anderson, W.J. & Wang, H.Y. Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience 110, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Gates, M.A., Laywell, E.D., Fillmore, H. & Steindler, D.A. Astrocytes and extracellular matrix following intracerebral transplantation of embryonic ventral mesencephalon or lateral ganglionic eminence. Neuroscience 74, 579–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Sykova, E., Roitbak, T., Mazel, T., Simonova, Z. & Harvey, A.R. Astrocytes, oligodendroglia, extracellular space volume and geometry in rat fetal brain grafts. Neuroscience 91, 783–798 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Snow, A.D. et al. An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 12, 219–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Wild-Bode, C. et al. Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J. Biol. Chem. 272, 16085–16088 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Urbanc, B. et al. Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer's disease. Proc. Natl. Acad. Sci. USA 99, 13990– 13995 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong, T.P., Debeir, T., Duff, K. & Cuello, A.C. Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J. Neurosci. 19, 2706–2716 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frautschy, S.A. et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307–317 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mathews, P.M. et al. Calpain activity regulates the cell surface distribution of amyloid precursor protein. Inhibition of calpains enhances endosomal generation of beta-cleaved C-terminal APP fragments. J. Biol. Chem. 277, 36415–36424 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y. & Kohsaka, S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J. Cell. Sci. 113, 3073–3084 (2000).

    CAS  PubMed  Google Scholar 

  49. Palkovits, M. Punch sampling biopsy technique. Methods Enzymol. 103, 368–376 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Wiltfang, J. et al. Improved electrophoretic separation and immunoblotting of beta-amyloid (A beta) peptides 1-40, 1-42 and 1-43. Electrophoresis 18, 527–532 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Schmidt (New York, USA) for the advice with ELISA, and D. Ingram (Baltimore, USA), S. Brandner and A. Aguzzi (Zürich, Switzerland) for help with the grafting procedure. Furthermore, we thank L. Walker (Ann Arbor, USA), M. Calhoun (New York, USA), S. Sisodia (Chicago, USA), E. Sykova (Prague, Czech Republic), T. Saido (Saitama, Japan), M. Leissring (Boston, USA), G. Multhaup and T. Hartmann (Heidelberg, Germany), A. Probst, M. Tolnay, A. Renken, and D. Monard (Basel, Switzerland) for advice, help and comments on this manuscript. This work has been supported by grants from the American Health Assistance Foundation (Alzheimer's disease program), the Horten Foundation (Madonna del Piano, Switzerland), the AETAS Foundation (Geneva, Switzerland) and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Jucker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Luehmann, M., Stalder, M., Herzig, M. et al. Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6, 370–377 (2003). https://doi.org/10.1038/nn1022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing