Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The glial identity of neural stem cells

Abstract

Glia are the most numerous cells in the brain, and their many diverse functions highlight their essential role in the nervous system. Recent studies have revealed an unexpected new role for glia in a wide variety of species, that of stem cells/progenitors in the adult and embryonic brain. Differentiation along the glial lineage may be a default state of development reflected in the progression of stem cells along the neuroepithelial→radial glia→astrocyte lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurogenesis in the adult mammalian brain.
Figure 2: Organization and cell types in the adult SVZ.
Figure 3: Organization and cell types in the adult SGZ.
Figure 4: LeX/SSEA1 is expressed in stem cells in the adult SVZ and in brain astrocytes.
Figure 5: Comparison of adult germinal zones and the glial identity of primary precursors across species.
Figure 6: Model of stem cell lineage from embryogenesis to adulthood.

Similar content being viewed by others

References

  1. Fields, R.D. & Stevens-Graham, B. New insights into neuron-glia communication. Science 298, 556–562 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Haydon, P.G. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    CAS  PubMed  Google Scholar 

  3. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–84 (1972).

    CAS  PubMed  Google Scholar 

  4. Choi, B.H. & Lapham, L.W. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res. 148, 295–311 (1978).

    CAS  PubMed  Google Scholar 

  5. Levitt, P. & Rakic, P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193, 815–840 (1980).

    CAS  PubMed  Google Scholar 

  6. Bignami, A. & Dahl, D. Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 252, 55–56 (1974).

    CAS  PubMed  Google Scholar 

  7. Feng, L., Hatten, M.E. & Heintz, N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895–908 (1994).

    CAS  PubMed  Google Scholar 

  8. Shibata, T. et al. Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuasa, S. Development of astrocytes in the mouse embryonic cerebrum tracked by tenascin-C gene expression. Arch. Histol. Cytol. 64, 119–126 (2001).

    CAS  PubMed  Google Scholar 

  10. Schmechel, D.E. & Rakic, P. A Golgi study of radial glia cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat. Embryol. 156, 115–152 (1979).

    CAS  Google Scholar 

  11. Voigt, T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 289, 74–88 (1989).

    CAS  PubMed  Google Scholar 

  12. Doetsch, F. & Scharff, C. Challenges for brain repair: insights from adult neurogenesis in birds and mammals. Brain Behav. Evol. 58, 306–322 (2001).

    CAS  PubMed  Google Scholar 

  13. Gould, E., Reeves, A.J., Graziano, M.S. & Gross, C.G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    CAS  PubMed  Google Scholar 

  14. Kornack, D.R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).

    CAS  PubMed  Google Scholar 

  15. Koketsu, D., Mikami, A., Miyamoto, Y. & Hisatsune, T. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci. 23, 937–942 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Paton, J.A. & Nottebohm, F. Neurons generated in the adult brain are recruited into functional circuits. Science 225, 1046–1048 (1984).

    CAS  PubMed  Google Scholar 

  17. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. & Lledo, P.M. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6, 507–518 (2003).

    CAS  PubMed  Google Scholar 

  19. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    CAS  PubMed  Google Scholar 

  20. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Google Scholar 

  21. Doetsch, F. & Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lois, C., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    CAS  PubMed  Google Scholar 

  24. Wichterle, H., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791 (1997).

    CAS  PubMed  Google Scholar 

  25. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 96, 11619–11624 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen, E. & Meininger, V. Ultrastructural analysis of primary cilium in the embryonic nervous tissue of mouse. Int. J. Dev. Neurosci. 5, 43–51 (1987).

    CAS  PubMed  Google Scholar 

  27. Doetsch, F., Caille, I., Lim, D.A., García-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  28. Holland, E.C. & Varmus, H.E. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc. Natl. Acad. Sci. USA 95, 1218–1223 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Levison, S.W. & Goldman, J.E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993).

    CAS  PubMed  Google Scholar 

  30. Marshall, C.A. & Goldman, J.E. Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci. 22, 9821–9830 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).

    CAS  PubMed  Google Scholar 

  32. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peters, A., Palay, S.L. & de Webster, H.F. The Fine Structure of the Nervous System: Neurons and their Supporting Cells (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  34. Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    CAS  PubMed  Google Scholar 

  35. Gritti, A. et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci. 19, 3287–3297 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    CAS  PubMed  Google Scholar 

  37. Doetsch, F. et al. Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J. Neurosci. 22, 2255–2264 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci. 23, 2824–2832 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Morshead, C.M., Garcia, A.D., Sofroniew, M.V. & van Der Kooy, D. The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci. 18, 76–84 (2003).

    PubMed  Google Scholar 

  40. Rietze, R.L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    CAS  PubMed  Google Scholar 

  41. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as non-ependymal. Neuron 35, 865–875 (2002).

    PubMed  Google Scholar 

  42. Johansson, C.B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    CAS  PubMed  Google Scholar 

  43. Chiasson, B.J., Tropepe, V., Morshead, C.M. & van der Kooy, D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim, D.A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    CAS  PubMed  Google Scholar 

  46. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Gen. Dev. 13, 543–550 (2003).

    CAS  Google Scholar 

  47. Geschwind, D.H. et al. A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339 (2001).

    CAS  PubMed  Google Scholar 

  48. Terskikh, A.V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl. Acad. Sci. USA 98, 7934–7939 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    CAS  PubMed  Google Scholar 

  50. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    CAS  PubMed  Google Scholar 

  51. Garcia-Verdugo, J.M. et al. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res. Bull. 57, 765–775 (2002).

    PubMed  Google Scholar 

  52. Alvarez-Buylla, A., García-Verdugo, J.M., Mateo, A. & Merchant-Larios, H. Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J. Neurosci. 18, 1020–1037 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Alvarez-Buylla, A. & Nottebohm, F. Migration of young neurons in adult avian brain. Nature 335, 353–354 (1988).

    CAS  PubMed  Google Scholar 

  54. Font, E., Desfilis, E., Perez-Canellas, M.M., Alcantara, S. & García-Verdugo, J.M. 3-Acetylpyridine-induced degeneration and regeneration in the adult lizard brain: a qualitative and quantitative analysis. Brain Res. 754, 245–259 (1997).

    CAS  PubMed  Google Scholar 

  55. Echeverri, K. & Tanaka, E.M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298, 1993–1996 (2002).

    CAS  PubMed  Google Scholar 

  56. Frederiksen, K. & McKay, R.D.G. Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci. 8, 1144–1151 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Noctor, S.C. et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161–3173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartfuss, E., Galli, R., Heins, N. & Gotz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    CAS  PubMed  Google Scholar 

  59. Gray, G.E. & Sanes, J.R. Lineage of radial glia in the chicken optic tectum. Development 114, 271–283 (1992).

    CAS  PubMed  Google Scholar 

  60. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    CAS  PubMed  Google Scholar 

  61. Tamamaki, N., Nakamura, K., Okamoto, K. & Kaneko, T. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res. 41, 51–60 (2001).

    CAS  PubMed  Google Scholar 

  62. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    CAS  PubMed  Google Scholar 

  63. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  64. Skogh, C. et al. Generation of regionally specified neurons in expanded glial cultures derived from the mouse and human lateral ganglionic eminence. Mol. Cell. Neurosci. 17, 811–820 (2001).

    CAS  PubMed  Google Scholar 

  65. Delaney, C.L., Brenner, M. & Messing, A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J. Neurosci. 16, 6908–6918 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  68. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    CAS  PubMed  Google Scholar 

  69. Kwon, C.H. et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat. Genet. 29, 404–411 (2001).

    CAS  PubMed  Google Scholar 

  70. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    CAS  PubMed  Google Scholar 

  73. Eckenhoff, M.F. & Rakic, P. Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the Rhesus monkey. J. Neurosci. 8, 2729–2747 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Alves, J.A., Barone, P., Engelender, S., Froes, M.M. & Menezes, J.R. Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone. J. Neurobiol. 52, 251–265 (2002).

    PubMed  Google Scholar 

  75. Gaiano, N., Nye, J.S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000).

    CAS  PubMed  Google Scholar 

  76. Zhou, M. & Kimelberg, H.K. Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J. Neurosci. 21, 7901–7908 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. D'Ambrosio, R., Wenzel, J., Schwartzkroin, P.A., McKhann, G.M. & Janigro, D. Functional specialization and topographic segregation of hippocampal astrocytes. J. Neurosci. 18, 4425–4438 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    CAS  PubMed  Google Scholar 

  79. Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shihabuddin, L.S., Horner, P.J., Ray, J. & Gage, F.H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lie, D.C. et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 22, 6639–6649 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gomez-Pinilla, F., Vu, L. & Cotman, C.W. Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo. J. Neurosci. 15, 2021–2029 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yazaki, N. et al. Differential expression patterns of mRNAs for members of the fibroblast growth factor receptor family, FGFR-1 – FGFR-4, in rat brain. J. Neurosci. Res. 37, 445–452 (1994).

    CAS  PubMed  Google Scholar 

  85. Fischer, A.J. & Reh, T.A. Muller glia are a potential source of neural regeneration in the postnatal chicken retina. PG. Nat. Neurosci. 4, 247–252 (2001).

    CAS  PubMed  Google Scholar 

  86. Raff, M.C. Glial cell diversification in the rat optic nerve. Science 243, 1450–1455 (1989).

    CAS  PubMed  Google Scholar 

  87. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    CAS  PubMed  Google Scholar 

  88. Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–86 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu, Q.R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    CAS  PubMed  Google Scholar 

  90. Zhou, Q. & Anderson, D.J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    CAS  PubMed  Google Scholar 

  91. Kruger, G.M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    CAS  PubMed  Google Scholar 

  93. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    CAS  PubMed  Google Scholar 

  94. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002).

    CAS  PubMed  Google Scholar 

  95. Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).

    CAS  PubMed  Google Scholar 

  96. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    CAS  PubMed  Google Scholar 

  97. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001).

    CAS  PubMed  Google Scholar 

  98. Sakakibara, S. & Okano, H. Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J. Neurosci. 17, 8300–8312 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaneko, Y. et al. Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev. Neurosci. 22, 139–153 (2000).

    CAS  PubMed  Google Scholar 

  100. Ramón y Cajal, S. Histology of the Nervous System of Man and Vertebrates Vol. 1 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

Download references

Acknowledgements

Thanks to K. Doetsch, J. Rihel, S. Santoro, C. Scharff and D. Thaler; C. Dulac for support at Harvard, and B. Seri and A. Alvarez-Buylla for the image in Fig. 3b. My apologies to all whose work was not cited due to space limitations. F.D. was supported by the Harvard University Society of Fellows, the Radcliffe Institute for Advanced Study (Burroughs Wellcome Fellow) and a W.F. Milton Fund Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Doetsch.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doetsch, F. The glial identity of neural stem cells. Nat Neurosci 6, 1127–1134 (2003). https://doi.org/10.1038/nn1144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing