Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area

Abstract

The neural mechanisms that mediate the transition from a drug-naive state to a state of drug dependence and addiction are not yet known. Here we show that a discrete population of GABAA receptors in the mammalian ventral tegmental area (VTA) serves as a potential addiction switching mechanism by gating reward transmission through one of two neural motivational systems: either a dopamine-independent (opiate-naive) or a dopaminergic (opiate-dependent or opiate-withdrawn) system. Bi-directional transmission of reward signals through this GABAA receptor substrate is dynamically controlled by the opiate state of the organism and involves a molecular alteration of the GABAA receptor. After opiate exposure and subsequent withdrawal, the functional conductance properties of the rat VTA GABAA receptor switch from an inhibitory to an excitatory signaling mode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological analysis of intra-VTA and intra-NAc bilateral cannulae placements.
Figure 2: To verify the presence of dopaminergic A10 neurons within the vicinity of VTA cannulae tips, alternate VTA sections were processed for TH immunoreactivity.
Figure 3: Motivational effects of intra-VTA muscimol or bicuculline in the opiate-naive versus opiate-dependent/withdrawn state: role of dopamine signaling.
Figure 4: Time-dependent effects on opiate withdrawal aversions and role of dopamine signaling; effects of GABAB receptor activation on VTA GABAA reward transmission.
Figure 5: Agonist activation of VTA GABAA receptors decreases CREB phosphorylation in the opiate-naive state, but increases CREB phosphorylation in the opiate-dependent/withdrawn state.
Figure 6: Single-unit extracellular recordings of VTA GABAergic neurons shows that a subpopulation of these neurons respond with excitatory depolarization to receptor activation in the opiate-dependent/withdrawn state.
Figure 7: The functional switch in GABAA receptor–mediated reward transmission is dependent upon carbonic anhydrase activity in the opiate-withdrawn state.

Similar content being viewed by others

References

  1. Mark, T.L., Woody, G.E., Juday, T. & Kleber, H.D. The economic costs of heroin addiction in the United States. Drug Alcohol Dep. 61, 195–206 (2001).

    Article  CAS  Google Scholar 

  2. Schulteis, G., Heyser, C.J. & Koob, G.F. Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: potentiation with a second morphine exposure. Psychopharmacology 129, 56–65 (1997).

    Article  CAS  Google Scholar 

  3. Vanderschuren, L.J., De Vries, T.J., Wardeh, G., Hogemboom, F.A. & Schoffelmeer, A.N. A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur. J. Neurosci. 14, 1533–1538 (2001).

    Article  CAS  Google Scholar 

  4. Nestler, E.J. Molecular neurobiology of addiction. Am. J. Addict. 10, 201–217 (2001).

    Article  CAS  Google Scholar 

  5. Wise, R.A. & Rompre, P.P. Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–225 (1989).

    Article  CAS  Google Scholar 

  6. Bechara, A., Nader, K. & van der Kooy. A two-separate motivational systems hypothesis of opioid addiction. Pharmacol. Biochem. Behav. 59, 1–17 (1998).

    Article  CAS  Google Scholar 

  7. Berridge, K.C. & Robinson, T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  Google Scholar 

  8. Robinson, T.E. & Berridge, K.C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  Google Scholar 

  9. Nader, K. & van der Kooy, D. Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J. Neurosci. 17, 383–390 (1997).

    Article  CAS  Google Scholar 

  10. Olmstead, M.C., Munn, E.M., Franklin, K.B. & Wise, R.A. Effects of pedunculopontine tegmental nucleus lesions on responding for intravenous heroin under different schedules of reinforcement. J. Neurosci. 18, 5035–5044 (1999).

    Article  Google Scholar 

  11. Dockstader, C.L., Rubinstein, M., Grandy, D.K., Low, M.J. & van der Kooy, D. The D2 receptor is critical in mediating opiate motivation only in opiate-dependent and withdrawn mice. Eur. J. Neurosci. 13, 995–1001 (2001).

    Article  CAS  Google Scholar 

  12. Gerrits, M., Ramsey, N.F., Wolternink, G. & van Ree, J.M. Lack of evidence for an involvement of the nucleus accumbens dopamine D1 receptors in the initiation of heroin self-administration in the rat. Psychopharmacology 114, 486–494 (1994).

    Article  CAS  Google Scholar 

  13. Laviolette, S.R., Nader, K. & van der Kooy, D. Motivational state determines the role of the mesolimbic dopamine system in the mediation of opiate reward processes. Behav. Brain Res. 129, 17–29 (2002).

    Article  CAS  Google Scholar 

  14. Robinson, T.E. & Berridge, K.C. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95 (Suppl. 2), S91–S117 (2000).

    PubMed  Google Scholar 

  15. Garris, P.A. et al. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69 (1999).

    Article  CAS  Google Scholar 

  16. Laviolette, S.R. & van der Kooy, D. GABAA receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non-dopaminergic neural motivational systems. Eur. J. Neurosci. 13, 1009–1015 (2001).

    Article  CAS  Google Scholar 

  17. Semba, K. & Fibiger, H.C. Afferent connections of the laterodorsal and pedunculopontine tegmental nuclei in the rat: a retro and antero-grade transport and immunohistochemical study. J. Comp. Neurol. 323, 387–410 (1992).

    Article  CAS  Google Scholar 

  18. Steininger, T.L., Rye, D.B. & Wainer, B.H. Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J. Comp. Neurol. 321, 515–543 (1992).

    Article  CAS  Google Scholar 

  19. Steffensen, S.C., Lee, R.S., Stobbs, S.H. & Henriksen, S.J. Responses of ventral tegmental area GABA neurons to brain stimulation reward. Brain Res. 906, 190–197 (2001).

    Article  CAS  Google Scholar 

  20. Churchill, L., Dilts, R.P. & Kalivas, P.W. Autoradiographic localization of GABAA receptors within the ventral tegmental area. Neurochem. Res. 17, 101–106 (1992).

    Article  CAS  Google Scholar 

  21. Klitenick, M.A., DeWitte, P. & Kalivas, P.W. Regulation of dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J. Neurosci. 12, 2623–2632 (1992).

    Article  CAS  Google Scholar 

  22. Xi, Z.X. & Stein, E.A. Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors: an in-vivo electrochemical study. Brain Res. 798, 156–165 (1998).

    Article  CAS  Google Scholar 

  23. Margreta-Mitrovic, M., Mitrovic, I., Riley, R.C., Jan, L.Y. & Basbaum, A.I. Immunohistochemical localization of GABAB receptors in the rat central nervous system. J. Comp. Neurol. 405, 299–321 (1999).

    Article  Google Scholar 

  24. Kalivas, P.W. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 18, 75–113 (1993).

    Article  CAS  Google Scholar 

  25. Kalivas, P.W., Duffy, P. & Eberhardt, H. Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. J. Pharmacol. Exp. Ther. 253, 858–867 (1990).

    CAS  PubMed  Google Scholar 

  26. Grace, A.A. & Bunney, B.S. Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur. J. Pharmacol. 59, 211–218 (1979).

    Article  CAS  Google Scholar 

  27. Stinus, L., Herman, J.P. & LeMoal, M. GABAergic mechanisms within the ventral tegmental area: involvement of dopaminergic (A10) and non-dopaminergic neurons. Psychopharmacology 77, 186–192 (1982).

    Article  CAS  Google Scholar 

  28. Creese, I., Burt, D.R. & Snyder, S.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483 (1976).

    Article  CAS  Google Scholar 

  29. Laviolette, S.R. & van der Kooy, D. Blockade of mesolimbic dopamine receptors dramatically potentiates the rewarding effects of nicotine in the ventral tegmental area. Mol. Psychol. 8, 50–59 (2003).

    Article  CAS  Google Scholar 

  30. Mackey, W.B. & van der Kooy, D. Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharm. Biochem. Behav. 22, 101–106 (1985).

    Article  CAS  Google Scholar 

  31. Brebner, K., Phelan, R. & Roberts, D.C.S. Intra-VTA baclofen attenuates cocaine self-administration on a progressive ratio schedule. Pharmacol. Biochem. Behav. 66, 857–862 (2000).

    Article  CAS  Google Scholar 

  32. Westerink, B.H.C., Kwint, J.B. & DeVries, J.B. The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J. Neurosci. 16, 2605–2611 (1996).

    Article  CAS  Google Scholar 

  33. Staley, K.J., Soldo, B. & Proctor, W. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 (1995).

    Article  CAS  Google Scholar 

  34. Auger, A.P., Perrot-Sinal, T.S. & McCarthy, M.M. Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain. Proc. Natl. Acad. Sci. USA 98, 8059–8064 (2001).

    Article  CAS  Google Scholar 

  35. Borsook, D., Smirnova, O., Behar, O., Lewis, S. & Kobierski, L.A. PhosphoCREB and CREM/ICER: positive and negative regulation of proenkephalin gene expression in the paraventricular nucleus of the hypothalamus. J. Mol. Neurosci. 12, 35–51 (1999).

    Article  CAS  Google Scholar 

  36. Steffensen, S.C., Svingos, A.L., Pickel, V.M. & Henriksen, S.J. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J. Neurosci. 18, 8003–8015 (1998).

    Article  CAS  Google Scholar 

  37. Van Bockstaele, E.J. & Pickel, V.M. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 682, 215–221 (1995).

    Article  CAS  Google Scholar 

  38. Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: a combined flourescent retrograde tracer and immunoflourescence study. Brain Res. Bull. 9, 321–353 (1982).

    Article  CAS  Google Scholar 

  39. Olpe, H.R., Koella, W.P., Wolf, P. & Haas, H.L. The action of baclofen on neurons of the substantia nigra and of the ventral tegmental area. Brain Res. 134, 577–580 (1977).

    Article  CAS  Google Scholar 

  40. Johnston, S.W. & North, R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    Article  Google Scholar 

  41. Gysling, K. & Wang, R.Y. Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res. 277, 119–127 (1983).

    Article  CAS  Google Scholar 

  42. Garzon, M. & Pickel, V.M. Plasmalemmal mu-opioid receptor distribution mainly in non-dopaminergic neurons in the rat ventral tegmental area. Synapse 41, 311–328 (2001).

    Article  CAS  Google Scholar 

  43. Svingos, A.L., Garzon, M., Colago, E.E.O. & Pickel, V.V. Mu-opioid receptors in the ventral tegmental area are targeted to presynaptically and directly modulate mesocortical projection neurons. Synapse 41, 221–229 (2001).

    Article  CAS  Google Scholar 

  44. Bonci, A. & Williams, J.T. Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17, 796–803 (1997).

    Article  CAS  Google Scholar 

  45. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M. & Miles, R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298, 1418–1421 (2002).

    Article  CAS  Google Scholar 

  46. Wagner, S., Castel, M., Gainer, H. & Yarom, Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387, 598–603 (1997).

    Article  CAS  Google Scholar 

  47. Coggeshal, R.E. & Lekan, H.A. Methods for discriminating numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol. 364, 6–15 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R Laviolette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laviolette, S., Gallegos, R., Henriksen, S. et al. Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nat Neurosci 7, 160–169 (2004). https://doi.org/10.1038/nn1182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing