Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sharing neuroimaging studies of human cognition

Abstract

After more than a decade of collecting large neuroimaging datasets, neuroscientists are now working to archive these studies in publicly accessible databases. In particular, the fMRI Data Center (fMRIDC), a high-performance computing center managed by computer and brain scientists, seeks to catalogue and openly disseminate the data from published fMRI studies to the community. This repository enables experimental validation and allows researchers to combine and examine patterns of brain activity beyond that of any single study. As with some biological databases, early scientific, technical and sociological concerns hindered initial acceptance of the fMRIDC. However, with the continued growth of this and other neuroscience archives, researchers are recognizing the potential of such resources for identifying new knowledge about cognitive and neural activity. Thus, the field of neuroimaging is following the lead of biology and chemistry, mining its accumulating body of knowledge and moving toward a 'discovery science' of brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The use of archived neuroimaging data can lead to new findings from the original study data or, simply, novel ways of visualizing previously reported effects.
Figure 2: Functional connectivity modeling is one way in which fMRI time-course data may be reused, not to identify individual activation foci, but to explore how these foci are interacting.

Ivelisse Robles

Similar content being viewed by others

References

  1. Raichle, M.E. Cerebral blood flow and metabolism. Ciba. Found. Symp. 85– 96 (1975).

  2. Roy, C.S. & Sherrington, C.S. On the regulation of blood supply of the brain. J. Physiol. 11, 85– 108 (1890).

    Article  CAS  PubMed Central  Google Scholar 

  3. Phelps, M.E., Hoffman, E.J., Huang, S.C. & Kuhl, D.E. Positron tomography: in vivo autoradiographic approach to measurement of cerebral hemodynamics and metabolism. Acta. Neurol. Scand. Suppl. 64, 446– 447 (1977).

    CAS  PubMed  Google Scholar 

  4. Posner, M.I. & Desimone, R. Beyond images. Curr. Opin. Neurobiol. 8, 175– 177 (1998).

    Article  CAS  Google Scholar 

  5. Richeson, J.A. et al. An fMRI investigation of the impact of interracial contact on executive function. Nat. Neurosci. 6, 1323– 1328 (2003).

    Article  CAS  Google Scholar 

  6. Goel, V. & Dolan, R.J. The functional anatomy of humor: segregating cognitive and affective components. Nat. Neurosci. 4, 237– 238 (2001).

    Article  CAS  Google Scholar 

  7. Buckner, R.L., Snyder, A.Z., Sanders, A.L., Raichle, M.E. & Morris, J.C. Functional brain imaging of young, nondemented, and demented older adults. J. Cogn. Neurosci. 12, 24– 34 (2000).

    Article  Google Scholar 

  8. Simpson, J.R. et al. The emotional modulation of cognitive processing: an fMRI study. J. Cogn. Neurosci. 12, 157– 170 (2000).

    Article  Google Scholar 

  9. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Wheeler, D.L. GenBank. Nucleic Acids Res. 31, 23– 27 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  10. Berman, H.M. et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 58, 899– 907 (2002).

    Article  PubMed Central  Google Scholar 

  11. Collins, F.S. & Mansoura, M.K. The human genome project. Cancer 91, 221– 225 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  12. Yarmush, M.L. & Jayaraman, A. Advances in proteomic technologies. Annu. Rev. Biomed. Eng. 4, 349– 373 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  13. Van Horn, J.D. et al. The functional magnetic resonance imaging data center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1323– 1339 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  14. Benson, D.A. et al. GenBank. Nucleic Acids Res. 30, 17– 20 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  15. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235– 242 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  16. Wlodawer, A. et al. Immediate release of crystallographic data: a proposal. Science 279, 302 (1998).

    Article  Google Scholar 

  17. Sussman, J.L. Protein Data Bank deposits. Science 282, 1991 (1998).

    Article  Google Scholar 

  18. Anonymous (Opinion). Rules of genome access. Nature 404, 414 (2000).

  19. Cozzarelli, N.R. UPSIDE: Uniform Principle for Sharing Integral Data and Materials Expeditiously. Proc. Natl. Acad. Sci. USA 101, 3721– 3722 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  20. Cech, T.R. Sharing Publication-Related Data and Materials: Responsibilities of Authorship in the Life Sciences (The National Academies Press, Washington D.C., 2003).

    Google Scholar 

  21. Shepherd, G.M. Supporting databases for neuroscience research. J. Neurosci. 22, 1497 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  22. Van Essen, D.C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 12, 574– 579 (2002).

    Article  CAS  Google Scholar 

  23. Toga, A. Neuroimaging databases: the good, the bad, and the ugly. Nat. Rev. Neurosci. 3, 302– 309 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  24. Koslow, S.H. Should the neuroscience community make a paradigm shift to sharing primary data? Nat. Neurosci. 2, 863– 261 (2000).

    Article  Google Scholar 

  25. Fox, P. & Lancaster, J. Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 3, 319– 321 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  26. Cover, T.M. & Thomas, J.A. Elements of Information Theory (ed. Schilling, D. L.) (Wiley, New York, 1991).

    Book  Google Scholar 

  27. Van Horn, J.D. & Gazzaniga, M.S. Maximizing information content in shared neuroimaging studies of cognitive function. Databasing the Brain: From Data to Knowledge (eds. Koslow, S.H. & Subramanian, A.) (John Wiley and Sons, New York, in press).

  28. Noy, N.F. & Klein, M. Ontology evolution: not the same as schema evolution. Technical Report SMI-2002-0926, Stanford Medical Informatics (2002).

    Google Scholar 

  29. Oliver, D.E. et al. Ontology development for a pharmacogenetics knowledge base. Pac. Symp. Biocomput., 65– 76 (2002).

  30. Berners-Lee, T., Hendler, J. & Lassila, O. The semantic web: a new form of web content that is meaningful to computer will unleash a revolution of new possibilities. Sci. Am., 284, 34– 43 (2001).

    Article  Google Scholar 

  31. Van Horn, J.D. et al. The fMRI data center: software tools for neuroimaging data management, inspection, and sharing. A Practical Guide to Neuroscience Databases and Associated Tools (ed. Kotter, R.) 221– 235 (Kluwer, Amsterdam, 2002).

    Google Scholar 

  32. Mirsky, J.S., Nadkarni, P.M., Healy, M.D., Miller, P.L. & Shepherd, G.M. Database tools for integrating and searching membrane property data correlated with neuronal morphology. J. Neurosci. Methods 82, 105– 121 (1998).

    Article  CAS  Google Scholar 

  33. Ascoli, G.A., Krichmar, J.L., Scorcioni, R., Nasuto, S.J. & Senft, S.L. Computer generation and quantitative morphometric analysis of virtual neurons. Anat. Embryol. (Berl.) 204, 283– 301 (2001).

    Article  CAS  Google Scholar 

  34. Insel, T.R., Volkow, N.D., Li, T.-K., Battey, J.F. & Landis, S.C. Neuroscience networks: data-sharing in an information age. PLoS Biol. 1, 9– 11 (2003).

    Article  CAS  Google Scholar 

  35. Mechelli, A., Gorno-Tempini, M.L. & Price, C.J. Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J. Cogn. Neurosci. 15, 260– 271 (2003).

    Article  Google Scholar 

  36. Ishai, A., Ungerleider, L.G., Martin, A. & Haxby, J.V. The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12, 35– 51 (2000).

    Article  Google Scholar 

  37. Toni, I. et al. Multiple movement representations in the human brain: an event-related fMRI study. J. Cogn. Neurosci. 14, 769– 784 (2002).

    Article  Google Scholar 

  38. Kable, J.W., Lease-Spellmeyer, J. & Chatterjee, A. Neural substrates of action event knowledge. J. Cogn. Neurosci. 14, 795– 805 (2002).

    Article  Google Scholar 

  39. Rypma, B., Berger, J.S. & D'Esposito, M. The influence of working-memory demand and subject performance on prefrontal cortical activity. J. Cogn. Neurosci. 14, 721– 731 (2002).

    Article  Google Scholar 

  40. Foster, I. The grid: computing without bounds. Sci. Am. 288, 78– 85 (2003).

    Article  PubMed Central  Google Scholar 

  41. Lloyd, D. Functional MRI and the study of human consciousness. J. Cogn. Neurosci. 14, 818– 831 (2002).

    Article  PubMed Central  Google Scholar 

  42. Carlson, T.A., Schrater, P. & He, S. Patterns of activity in the categorical representations of objects. J. Cogn. Neurosci. 15, 704– 717 (2003).

    Article  Google Scholar 

  43. Greicius, M.D., Srivastava, G., Reiss, A.L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA published online March 15 (2004).

  44. Reiman, E.M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset alzheimer's dementia. Proc. Natl. Acad. Sci. USA 101, 284– 289 (2004).

    Article  CAS  Google Scholar 

  45. Ramnani, N. et al. Exploring brain connectivity: a new frontier in systems neuroscience. Trends Neurosci. 25, 496– 497 (2002).

    Article  Google Scholar 

  46. Horwitz, B., Tagamets, M.A. & McIntosh, A.R. Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci. 3, 91– 98 (1999).

    Article  CAS  Google Scholar 

  47. Buchel, C., Coull, J.T. & Friston, K.J. The predictive value of changes in effective connectivity for human learning. Science 283, 1538– 1541 (1999).

    Article  CAS  Google Scholar 

  48. Arbib, M.A., Billard, A., Iacoboni, M. & Oztop, E. Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Net. 13, 975– 997 (2000).

    Article  CAS  Google Scholar 

  49. Mechelli, A., Price, C., Noppeney, U. & Friston, K. A dynamic causal modelling study on category effects: bottom-up or top-down mediation? J. Cogn. Neurosci. 15, 925– 934 (2003).

    Article  Google Scholar 

  50. Friston, K.J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273– 1302 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  51. Liou, M., Su, H.-R., Lee, J.-D. & Cheng, P.E. Bridging functional MR images and scientific inference: reproducibility maps. J. Cogn. Neurosci. 15, 934– 945 (2003).

    Article  Google Scholar 

  52. Hood, L. Leroy Hood expounds the principles, practice and future of systems biology. Drug Discov. Today 8, 436– 438 (2003).

    Article  PubMed Central  Google Scholar 

  53. Beltrame, F. & Koslow, S.H. Neuroinformatics as a megascience issue. IEEE Trans. Inf. Technol. Biomed. 3, 239– 240 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  54. Koslow, S.H. Opinion: Sharing primary data: a threat or asset to discovery? Nat. Rev. Neurosci. 3, 311– 313 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  55. Martone, M.E., Gupta, A. & Ellisman, M.H. e-Neuroscience: challenges and triumphs in integrating distributed data from molecules to brains. Nat. Neurosci. 7, 467– 472 (2004).

    Article  CAS  Google Scholar 

  56. Brett, M., Johnsrude, I.S. & Owen, A.M. The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3, 243– 249 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  57. Talairach, J. & Tournoux, P. Co-Planar Stereotactic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  58. Friston, K.J. et al. Analysis of fMRI time-series revisited. Neuroimage 2, 45– 53 (1995).

    Article  CAS  Google Scholar 

  59. Druzgal, T.J. & D'Esposito, M. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. J. Cogn. Neurosci. 15, 771– 784 (2003).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The fMRI Data Center is supported by the National Science Foundation (BCS-9978166), the William M. Keck Foundation, and the National Institute of Mental Health Human Brain Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Darrell Van Horn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, J., Grafton, S., Rockmore, D. et al. Sharing neuroimaging studies of human cognition. Nat Neurosci 7, 473–481 (2004). https://doi.org/10.1038/nn1231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing