Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attentional modulation of human auditory cortex

Abstract

Attention powerfully influences auditory perception, but little is understood about the mechanisms whereby attention sharpens responses to unattended sounds. We used high-resolution surface mapping techniques (using functional magnetic resonance imaging, fMRI) to examine activity in human auditory cortex during an intermodal selective attention task. Stimulus-dependent activations (SDAs), evoked by unattended sounds during demanding visual tasks, were maximal over mesial auditory cortex. They were tuned to sound frequency and location, and showed rapid adaptation to repeated sounds. Attention-related modulations (ARMs) were isolated as response enhancements that occurred when subjects performed pitch-discrimination tasks. In contrast to SDAs, ARMs were localized to lateral auditory cortex, showed broad frequency and location tuning, and increased in amplitude with sound repetition. The results suggest a functional dichotomy of auditory cortical fields: stimulus-determined mesial fields that faithfully transmit acoustic information, and attentionally labile lateral fields that analyze acoustic features of behaviorally relevant sounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral task.
Figure 2: Imaging technique.
Figure 3: Stimulation-dependent activations and attention-related modulations (SDAs and ARMs).
Figure 4: SDA and ARM kinetics.
Figure 5: Contralateral versus ipsilateral stimulation.
Figure 6: Tonotopy.

Similar content being viewed by others

References

  1. Woods, D.L., Alho, K. & Algazi, A. Intermodal selective attention I: Effects on event-related potentials to lateralized auditory and visual stimuli. Electroencephalogr. Clin. Neurophysiol. 82, 341–355 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Alho, K., Woods, D.L., Algazi, A. & Näätänen, R. Intermodal selective attention II. Effects of attentional load on processing auditory and visual stimuli in central space. Electroencephalogr. Clin. Neurophysiol. 82, 356–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Alho, K. et al. Selective tuning of the left and right auditory cortices during spatially directed attention. Brain Res. Cogn. Brain Res. 7, 335–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Woodruff, P.W. et al. Modulation of auditory and visual cortex by selective attention is modality-dependent. Neuroreport 7, 1909–1913 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Woldorff, M.G. et al. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc. Natl. Acad. Sci. USA 90, 8722–8726 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alcaini, M., Giard, M.H., Thevenet, M. & Pernier, J. Two separate frontal components in the N1 wave of the human auditory evoked response. Psychophysiology 31, 611–615 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Woods, D.L. & Alain, C. Conjoining three auditory features: an event-related brain potential study. J. Cogn. Neurosci. 13, 493–509 (2001).

    Article  Google Scholar 

  8. Woods, D.L., Hillyard, S.A., Courchesne, E. & Galambos, R. Electrophysiological signs of split-second decision-making. Science 207, 655–657 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Tzourio, N. et al. Functional anatomy of human auditory attention studied with PET. Neuroimage 5, 63–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Jäncke, L., Mirzazade, S. & Shah, N.J. Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neurosci. Lett. 266, 125–128 (1999).

    Article  PubMed  Google Scholar 

  11. Pugh, K.R. et al. Auditory selective attention: an fMRI investigation. Neuroimage 4, 159–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Grady, C.L. et al. Attention-related modulation of activity in primary and secondary auditory cortex. Neuroreport 8, 2511–2516 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Binder, J.R. et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10, 512–528 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Rauschecker, J.P. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Desimone, R. Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. London B Biol. Sci. 353, 1245–1255 (1998).

    Article  CAS  Google Scholar 

  16. Dale, A.M., Fischl, B. & Sereno, M.I. Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Talavage, T.M. et al. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J. Neurophysiol. 91, 1282–1296 (2004).

    Article  PubMed  Google Scholar 

  18. Formisano, E. et al. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13, 669–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Schönwiesner, M., Von Cramon, D.Y. & Rübsamen, R. Is it tonotopy after all? Neuroimage 17, 1144–1161 (2002).

    Article  PubMed  Google Scholar 

  21. Talavage, T.M., Ledden, P.J., Benson, R.R., Rosen, B.R. & Melcher, J.R. Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear. Res. 150, 225–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Bilecen, D., Scheffler, K., Schmid, N., Tschopp, K. & Seelig, J. Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear. Res. 126, 19–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Phillips, D.P., Semple, M.N., Calford, M.B. & Kitzes, L.M. Level-dependent representation of stimulus frequency in cat primary auditory cortex. Exp. Brain Res. 102, 210–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wallace, M.N., Johnston, P.W. & Palmer, A.R. Histochemical identification of cortical areas in the auditory region of the human brain. Exp. Brain Res. 143, 499–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Rivier, F. & Clarke, S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6, 288–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Kaas, J.H., Hackett, T.A. & Tramo, M.J. Auditory processing in primate cerebral cortex. Curr. Opin. Neurobiol. 9, 164–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Recanzone, G.H. Spatial processing in the auditory cortex of the macaque monkey. Proc. Natl. Acad. Sci. USA 97, 11829–11835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jäncke, L., Specht, K., Shah, J.N. & Hugdahl, K. Focused attention in a simple dichotic listening task: an fMRI experiment. Brain Res. Cogn. Brain Res. 16, 257–266 (2003).

    Article  PubMed  Google Scholar 

  29. Brechmann, A., Baumgart, F. & Scheich, H. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J. Neurophysiol. 87, 423–433 (2002).

    Article  PubMed  Google Scholar 

  30. Celsis, P. et al. Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage 9, 135–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Gaab, N., Keenan, J.P. & Schlaug, G. The effects of gender on the neural substrates of pitch memory. J. Cogn. Neurosci. 15, 810–820 (2003).

    Article  PubMed  Google Scholar 

  32. Kosaki, H., Hashikawa, T., He, J. & Jones, E.G. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J. Comp. Neurol. 386, 304–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hackett, T.A., Preuss, T.M. & Kaas, J.H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441, 197–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Rauschecker, J.P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alain, C., Arnott, S.R., Hevenor, S., Graham, S. & Grady, C.L. “What” and “where” in the human auditory system. Proc. Natl. Acad. Sci. USA 98, 12301–12306 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Warren, J.D. & Griffiths, T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J. Neurosci. 23, 5799–5804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jäncke, L. et al. The time course of the BOLD response in the human auditory cortex to acoustic stimuli of different duration. Brain Res. Cogn. Brain Res. 8, 117–124 (1999).

    Article  PubMed  Google Scholar 

  39. Opitz, B., Rinne, T., Mecklinger, A., Von Cramon, D.Y. & Schröger, E. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage 15, 167–174 (2002).

    Article  PubMed  Google Scholar 

  40. Escera, C., Alho, K., Winkler, I. & Näätänen, R. Neural mechanisms of involuntary attention to acoustic novelty and change. J. Cog. Neurosci. 10, 590–604 (1998).

    Article  CAS  Google Scholar 

  41. Woods, D.L. in Event-Related Brain Potentials: Issues and Interdisciplinary Vantages (eds. Rohrbaugh, J.W., Johnson, R. & Parasuraman, R.) 178–209 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  42. Jäncke, L., Shah, N.J., Posse, S., Grosse-Ryuken, M. & Muller-Gartner, H.W. Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 36, 875–883 (1998).

    Article  PubMed  Google Scholar 

  43. Bilecen, D., Seifritz, E., Scheffler, K., Henning, J. & Schulte, A.C. Amplitopicity of the human auditory cortex: an fMRI study. Neuroimage 17, 710–718 (2002).

    Article  PubMed  Google Scholar 

  44. Murray, S.O. & Wojciulik, E. Attention increases neural selectivity in the human lateral occipital complex. Nat. Neurosci. 7, 70–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kiehl, K.A., Laurens, K.R., Duty, T.L., Forster, B.B. & Liddle, P.F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophys. 38, 133–142 (2001).

    Article  CAS  Google Scholar 

  46. Downar, J., Crawley, A.P., Mikulis, D.J. & Davis, K.D. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14, 1256–1267 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 104, 163–191 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl. Acad. Sci. USA 93, 13494–13499 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kosslyn, S.M., Thompson, W.L., Kim, I.J. & Alpert, N.M. Topographical representations of mental images in primary visual cortex. Nature 378, 496–498 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Martinez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grant DC005814 from the National Institutes of Health (National Institute on Deafness and Other Communication Disorders), by the Department of Veterans Affairs Research Service, a MIND (Medical Investigation of Neurodevelopmental Disorders) Institute fellowship to C.P., the Academy of Finland (grants 49126 and 102316) and the Institut National de la Santé et de la Recherche Médicale. We thank T. Herron for the development of statistical tools, and G. Recanzone, D. Swick and the anonymous reviewers for comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L Woods.

Ethics declarations

Competing interests

D.L.W. has a commercial interest in the Presentation software that was used to deliver stimuli and record behavioral responses in this experiment.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkov, C., Kang, X., Alho, K. et al. Attentional modulation of human auditory cortex. Nat Neurosci 7, 658–663 (2004). https://doi.org/10.1038/nn1256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing