Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity

Abstract

The synapse is a highly organized cellular specialization whose structure and composition are reorganized, both positively and negatively, depending on the strength of input signals. The mechanisms orchestrating these changes are not well understood. A plausible locus for the reorganization of synapse components and structure is actin, because it serves as both cytoskeleton and scaffold for synapses and exists in a dynamic equilibrium between F-actin and G-actin that is modulated bidirectionally by cellular signaling. Using a new FRET-based imaging technique to monitor F-actin/G-actin equilibrium, we show here that tetanic stimulation causes a rapid, persistent shift of actin equilibrium toward F-actin in the dendritic spines of rat hippocampal neurons. This enlarges the spines and increases postsynaptic binding capacity. In contrast, prolonged low-frequency stimulation shifts the equilibrium toward G-actin, resulting in a loss of postsynaptic actin and of structure. This bidirectional regulation of actin is actively involved in protein assembly and disassembly and provides a substrate for bidirectional synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET between CFP- and YFP-actin represents F-actin.
Figure 2: Observation of F-actin/G-actin equilibrium in dendritic spines of CA1 pyramidal cells.
Figure 3: Tetanic stimulation shifts F-actin/G-actin equilibrium toward F-actin and enlarges spine head.
Figure 4: FRET change induced by tetanic stimulation is localized and mediated by synaptic activation of NMDA receptor.
Figure 5: Prolonged low-frequency stimulation induces depolymerization of actin and shrinkage of the spine head.
Figure 6: Imaging of cytosolic fluorescence confirms enlargement of the dendritic spine as a result of tetanic stimulation.
Figure 7: Spontaneous dynamics of dendritic spines are coupled with modulation of actin equilibrium.
Figure 8: Pharmacological induction of F-actin is sufficient to induce synaptic delivery of CaMKII by increasing postsynaptic binding capacity.

Similar content being viewed by others

References

  1. Sheng, M. & Pak, D.T. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755–778 (2000).

    Article  CAS  Google Scholar 

  2. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  3. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  4. Shen, K., Teruel, M.N., Connor, J.H., Shenolikar, S. & Meyer, T. Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat. Neurosci. 3, 881–886 (2000).

    Article  CAS  Google Scholar 

  5. Piccini, A. & Malinow, R. Critical postsynaptic density 95/disc large/zonula occludens-1 interactions by glutamate receptor 1 (GluR1) and GluR2 required at different subcellular sites. J. Neurosci. 22, 5387–5392 (2002).

    Article  CAS  Google Scholar 

  6. Hosokawa, T., Rusakov, D.A., Bliss, T.V. & Fine, A. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15, 5560–5573 (1995).

    Article  CAS  Google Scholar 

  7. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  8. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  9. Buchs, P.A. & Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93, 8040–8045 (1996).

    Article  CAS  Google Scholar 

  10. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  Google Scholar 

  11. Lamprecht, R. & LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  12. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    Article  CAS  Google Scholar 

  13. Rao, A. & Craig, A.M. Signaling between the actin cytoskeleton and the postsynaptic density of dendritic spines. Hippocampus 10, 527–541 (2000).

    Article  CAS  Google Scholar 

  14. Hering, H. & Sheng, M. Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J. Neurosci. 23, 11759–11769 (2003).

    Article  CAS  Google Scholar 

  15. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  16. Fifkova, E. & Morales, M. Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int. Rev. Cytol. 139, 267–307 (1992).

    Article  CAS  Google Scholar 

  17. Star, E.N., Kwiatkowski, D.J. & Murthy, V.N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246 (2002).

    Article  CAS  Google Scholar 

  18. Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844 (1998).

    Article  CAS  Google Scholar 

  19. Capani, F., Martone, M.E., Deerinck, T.J. & Ellisman, M.H. Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol. 435, 156–170 (2001).

    Article  CAS  Google Scholar 

  20. Allison, D.W., Gelfand, V.I., Spector, I. & Craig, A.M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  Google Scholar 

  21. Zhou, Q., Xiao, M. & Nicoll, R.A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 98, 1261–1266 (2001).

    Article  CAS  Google Scholar 

  22. Colicos, M.A., Collins, B.E., Sailor, M.J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    Article  CAS  Google Scholar 

  23. Kim, C.H. & Lisman, J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  Google Scholar 

  24. Krucker, T., Siggins, G.R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA 97, 6856–6861 (2000).

    Article  CAS  Google Scholar 

  25. Furuyashiki, T., Arakawa, Y., Takemoto-Kimura, S., Bito, H. & Narumiya, S. Multiple spatiotemporal modes of actin reorganization by NMDA receptors and voltage-gated Ca2+ channels. Proc. Natl. Acad. Sci. USA 99, 14458–14463 (2002).

    Article  CAS  Google Scholar 

  26. Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178–8186 (1997).

    Article  CAS  Google Scholar 

  27. Wang, Y.L. & Taylor, D.L. Probing the dynamic equilibrium of actin polymerization by fluorescence energy transfer. Cell 27, 429–436 (1981).

    Article  CAS  Google Scholar 

  28. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  29. Posern, G., Sotiropoulos, A. & Treisman, R. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol. Biol. Cell 13, 4167–4178 (2002).

    Article  CAS  Google Scholar 

  30. Kauer, J.A., Malenka, R.C. & Nicoll, R.A. NMDA application potentiates synaptic transmission in the hippocampus. Nature 334, 250–252 (1988).

    Article  CAS  Google Scholar 

  31. Petersen, C.C., Malenka, R.C., Nicoll, R.A. & Hopfield, J.J. All-or-none potentiation at CA3–CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 (1998).

    Article  CAS  Google Scholar 

  32. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

    Article  CAS  Google Scholar 

  33. Shen, K., Teruel, M.N., Subramanian, K. & Meyer, T. CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron 21, 593–606 (1998).

    Article  CAS  Google Scholar 

  34. Sankaranarayanan, S., Atluri, P.P. & Ryan, T.A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6, 127–135 (2003).

    Article  CAS  Google Scholar 

  35. Bienenstock, E.L., Cooper, L.N. & Munro, P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  36. Bear, M.F. A synaptic basis for memory storage in the cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 13453–13459 (1996).

    Article  CAS  Google Scholar 

  37. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  Google Scholar 

  38. Harris, K.M. & Stevens, J.K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  39. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  40. Lisman, J. & Goldring, M. Evaluation of a model of long-term memory based on the properties of the Ca2+/calmodulin-dependent protein kinase. J. Physiol. (Paris) 83, 187–197 (1988).

    Google Scholar 

  41. Malinow, R., Madison, D.V. & Tsien, R.W. Persistent protein kinase activity underlying long-term potentiation. Nature 335, 820–824 (1988).

    Article  CAS  Google Scholar 

  42. Esteban, J.A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136–143 (2003).

    Article  CAS  Google Scholar 

  43. Frey, U. & Morris, R.G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  Google Scholar 

  44. Lee, S.H., Liu, L., Wang, Y.T. & Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661–674 (2002).

    Article  CAS  Google Scholar 

  45. Mulkey, R.M., Endo, S., Shenolikar, S. & Malenka, R.C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    Article  CAS  Google Scholar 

  46. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

    Article  CAS  Google Scholar 

  47. Gohla, A. & Bokoch, G.M. 14–3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol. 12, 1704–1710 (2002).

    Article  CAS  Google Scholar 

  48. Ackermann, M. & Matus, A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat. Neurosci. 6, 1194–1200 (2003).

    Article  CAS  Google Scholar 

  49. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  50. Mainen, Z.F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999).

    Article  CAS  Google Scholar 

  51. Matsukaski, M., Honkura, N., Ellis-Davies, G.C.R. & Kasai, H. Structural basis of long-term potentaation in single dedritic spines. Nature 429, 761–766 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Takao, H. Fujisawa, T. Kiuchi, E. Ruthazer, R. Malinow, M. Sheng, J. Lisman, F. Gertler, T. Emery and E. Hueske for valuable advice and sharing of resources. Y.H. is supported in part by The Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Hayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, KI., Nagai, T., Miyawaki, A. et al. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7, 1104–1112 (2004). https://doi.org/10.1038/nn1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1311

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing