Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans

Abstract

D1-like and D2-like dopamine receptors have synergistic and antagonistic effects on behavior. To understand the mechanisms underlying these effects, we studied dopamine signaling genetically in Caenorhabditis elegans. Knocking out a D2-like receptor, DOP-3, caused locomotion defects similar to those observed in animals lacking dopamine. Knocking out a D1-like receptor, DOP-1, reversed the defects of the DOP-3 knockout. DOP-3 and DOP-1 have their antagonistic effects on locomotion by acting in the same motor neurons, which coexpress the receptors and which are not postsynaptic to dopaminergic neurons. In a screen for mutants unable to respond to dopamine, we identified four genes that encode components of the antagonistic Gαo and Gαq signaling pathways, including Gαo itself and two subunits of the regulator of G protein signaling (RGS) complex that inhibits Gαq. Our results indicate that extrasynaptic dopamine regulates C. elegans locomotion through D1- and D2-like receptors that activate the antagonistic Gαq and Gαo signaling pathways, respectively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence comparison of DOP-3 with other C. elegans and human receptors.
Figure 2: Gene structure and knockout mutations of dop-1, dop-2 and dop-3.
Figure 3: Analysis of dopamine signaling defects in receptor knockout mutants.
Figure 4: Fluorescence of animals carrying integrated transgenes that express GFP from the dop-1 promoter and RFP from the dop-3 promoter.
Figure 5: Rescue of dop-1 and dop-3 function by transgenic expression in ventral cord motor neurons.
Figure 6: Analysis of dopamine signaling defects in mutants isolated from the screen.
Figure 7: Dopamine response of mutants that disrupt the Gαo and Gαq signaling.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Knable, M.B. & Weinberger, D.R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131 (1997).

    Article  CAS  Google Scholar 

  2. Koob, G.F., Sanna, P.P. & Bloom, F.E. Neuroscience of addiction. Neuron 21, 467–476 (1998).

    Article  CAS  Google Scholar 

  3. Lang, A.E. & Lozano, A.M. Parkinson's disease. First of two parts. N. Engl. J. Med. 339, 1044–1053 (1998).

    Article  CAS  Google Scholar 

  4. Missale, C., Nash, S.R., Robinson, S.W., Jaber, M. & Caron, M.G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225 (1998).

    Article  CAS  Google Scholar 

  5. Gong, W., Neill, D.B., Lynn, M. & Justice, J.B., Jr. Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 93, 1349–1358 (1999).

    Article  CAS  Google Scholar 

  6. McNamara, F.N. et al. Congenic D1A Dopamine receptor mutants: ethologically based resolution of behavioral topology indicates genetic background as a determinant of knockout phenotype. Neuropharmacology 28, 86–99 (2003).

    CAS  Google Scholar 

  7. Kelly, M.A. et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosci. 18, 3470–3479 (1998).

    Article  CAS  Google Scholar 

  8. Plaznik, A., Stefanski, R. & Kostowski, W. Interaction between accumbens D1 and D2 receptors regulating rat locomotor activity. Psychopharmacology (Berl.) 99, 558–562 (1989).

    Article  CAS  Google Scholar 

  9. Aizman, O. et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3, 226–230 (2000).

    Article  CAS  Google Scholar 

  10. Kimura, K., White, B.H. & Sidhu, A. Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and Go . J. Biol. Chem. 270, 14672–14678 (1995).

    Article  CAS  Google Scholar 

  11. Corvol, J.C., Studler, J.M., Schonn, J.S., Girault, J.A. & Herve, D. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem. 76, 1585–1588 (2001).

    Article  CAS  Google Scholar 

  12. Liu, Y.F., Jakobs, K.H., Rasenick, M.M. & Albert, P.R. G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J. Biol. Chem. 269, 13880–13886 (1994).

    CAS  PubMed  Google Scholar 

  13. Senogles, S.E. The D2 dopamine receptor isoforms signal through distinct Giα proteins to inhibit adenylyl cyclase. A study with site-directed mutant Giα proteins. J. Biol. Chem. 269, 23120–23127 (1994).

    CAS  PubMed  Google Scholar 

  14. Sawin, E.R., Ranganathan, R. & Horvitz, H.R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619–631 (2000).

    Article  CAS  Google Scholar 

  15. Wintle, R.F. & Van Tol, H.H. Dopamine signaling in Caenorhabditis elegans—potential for parkinsonism research. Parkinsonism Relat. Disord. 7, 177–183 (2001).

    Article  Google Scholar 

  16. Nass, R. & Blakely, R.D. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu. Rev. Pharmacol. Toxicol. 43, 521–544 (2003).

    Article  CAS  Google Scholar 

  17. Suo, S., Sasagawa, N. & Ishiura, S. Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci. Lett. 319, 13–16 (2002).

    Article  CAS  Google Scholar 

  18. Suo, S., Sasagawa, N. & Ishiura, S. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J. Neurochem. 86, 869–878 (2003).

    Article  CAS  Google Scholar 

  19. Lints, R. & Emmons, S.W. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFβ family signaling pathway and a Hox gene. Development 126, 5819–5831 (1999).

    CAS  PubMed  Google Scholar 

  20. Sanyal, S. et al. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J. 23, 473–482 (2004).

    Article  CAS  Google Scholar 

  21. Schafer, W.R. & Kenyon, C.J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375, 73–78 (1995).

    Article  CAS  Google Scholar 

  22. Lewis, J.A., Wu, C.-H., Levine, J.H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).

    Article  CAS  Google Scholar 

  23. Zheng, Y., Brockie, P.J., Mellem, J.E., Madsen, D.M. & Maricq, A.V. Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 24, 347–361 (1999).

    Article  CAS  Google Scholar 

  24. Nass, R., Hall, D.H. & Miller, D.M., III. & Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 3264–3269 (2002).

    Article  CAS  Google Scholar 

  25. Tsalik, E.L. et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol. 263, 81–102 (2003).

    Article  CAS  Google Scholar 

  26. White, J.G., Southgate, E., Thompson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  27. Hallam, S., Singer, E., Waring, D. & Jin, Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127, 4239–4252 (2000).

    CAS  PubMed  Google Scholar 

  28. Eastman, C., Horvitz, H.R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).

    Article  CAS  Google Scholar 

  29. Lochrie, M.A., Mendel, J.E., Sternberg, P.W. & Simon, M.I. Homologous and unique G protein α subunits in the nematode Caenorhabditis elegans. Cell Regul. 2, 135–154 (1991).

    Article  CAS  Google Scholar 

  30. Mendel, J.E. et al. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267, 1652–1655 (1995).

    Article  CAS  Google Scholar 

  31. Ségalat, L., Elkes, D.A. & Kaplan, J.M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267, 1648–1651 (1995).

    Article  Google Scholar 

  32. Nurrish, S., Ségalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Gαo decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).

    Article  CAS  Google Scholar 

  33. Hajdu-Cronin, Y.M., Chen, W.J., Patikoglou, G., Koelle, M.R. & Sternberg, P.W. Antagonism between Goα and Gqα in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goα signaling and regulates Gqα activity. Genes Dev. 13, 1780–1793 (1999).

    Article  CAS  Google Scholar 

  34. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chase, D.L., Patikoglou, G.A. & Koelle, M.R. Two RGS proteins that inhibit Gαo and Gαq signaling in C. elegans neurons require a Gβ5-like subunit for function. Curr. Biol. 11, 222–231 (2001).

    Article  CAS  Google Scholar 

  36. Robatzek, M., Niacaris, T., Steger, K., Avery, L. & Thomas, J.H. eat-11 encodes GPB-2, a Gβ5 ortholog that interacts with Goα and Gqα to regulate C. elegans behavior. Curr. Biol. 11, 288–293 (2001).

    Article  CAS  Google Scholar 

  37. van der Linden, A.M., Simmer, F., Cuppen, E. & Plasterk, R.H.A. The G-protein β-subunit GPB-2 in Caenorhabditis elegans regulates the Goα-Gqα signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics 158, 221–235 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Robatzek, M. & Thomas, J.H. Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with a Go/Gq signaling network. Genetics 156, 1069–1082 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brundage, L. et al. Mutations in a C. elegans Gqα gene disrupt movement, egg laying, and viability. Neuron 16, 999–1009 (1996).

    Article  CAS  Google Scholar 

  40. Koelle, M.R. & Horvitz, H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  Google Scholar 

  41. Miller, K.G., Emerson, M.D. & Rand, J.B. Goα and diacylglycerol kinase negatively regulate the Gqα pathway in C. elegans. Neuron 24, 323–333 (1999).

    Article  CAS  Google Scholar 

  42. Yung, K.K.L. et al. Immunocytochemical localization of D1 and D2 receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730 (1995).

    Article  CAS  Google Scholar 

  43. Caillé, I., Dumartin, B. & Bloch, B. Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res. 730, 17–31 (1996).

    Article  Google Scholar 

  44. Gonon, F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J. Neurosci. 17, 5972–5978 (1997).

    Article  CAS  Google Scholar 

  45. Lackner, M.R., Nurrish, S.J. & Kaplan, J.M. Facilitation of synaptic transmission by EGL-30 Gqα and EGL-8 PLCβ: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346 (1999).

    Article  CAS  Google Scholar 

  46. Jiang, M., Spicher, K., Boulay, G., Wang, Y. & Birnbaumer, L. Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc. Natl. Acad. Sci. USA 298, 3577–3582 (2001).

    Article  Google Scholar 

  47. Wang, H.Y., Undie, A.S. & Friedman, E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol. Pharmacol. 48, 988–994 (1995).

    CAS  PubMed  Google Scholar 

  48. Girault, J.A., Spampinato, U., Glowinski, J. & Besson, M.J. In vivo release of [3H]γ-aminobutyric acid in the rat neostriatum-II. Opposing effects of D1 and D2 dopamine receptor stimulation in the dorsal caudate putamen. Neuroscience 19, 1109–1117 (1986).

    Article  CAS  Google Scholar 

  49. Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T. & Maruyama, Y. Regulation of dopamine D1 and D2 receptors on striatal acetylcholine release in rats. Brain Res. Bull. 43, 107–115 (1997).

    Article  CAS  Google Scholar 

  50. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Michael J. Fox Foundation for Parkinson's Research, the Robert Leet and Clara Guthrie Patterson Trust, the NIH and the Leukemia and Lymphoma Society. Some strains were obtained from the Caenorhabditis Genetics Center, which is supported by the NIH National Center for Research Resources. We thank A. Nairn for helpful discussions and A. Jose for sequencing dgk-1 alleles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L Chase.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of the opposing G protein signaling pathways that control locomotion behavior in C. elegans. See text for a description of the Gαo and Gαq pathways. Our results suggest that dopamine decreases locomotion by binding to DOP-3 and activating GOA-1 Gαo signaling, while dopamine also increases locomotion by binding DOP-1 and activating EGL-30 Gαq signaling, and that these events occur within the same cells. (GIF 11 kb)

Supplementary Methods (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chase, D., Pepper, J. & Koelle, M. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7, 1096–1103 (2004). https://doi.org/10.1038/nn1316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing