Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons

Abstract

The mammalian suprachiasmatic nucleus (SCN) is a master circadian pacemaker. It is not known which SCN neurons are autonomous pacemakers or how they synchronize their daily firing rhythms to coordinate circadian behavior. Vasoactive intestinal polypeptide (VIP) and the VIP receptor VPAC2 (encoded by the gene Vipr2) may mediate rhythms in individual SCN neurons, synchrony between neurons, or both. We found that Vip−/− and Vipr2−/− mice showed two daily bouts of activity in a skeleton photoperiod and multiple circadian periods in constant darkness. Loss of VIP or VPAC2 also abolished circadian firing rhythms in approximately half of all SCN neurons and disrupted synchrony between rhythmic neurons. Critically, daily application of a VPAC2 agonist restored rhythmicity and synchrony to VIP−/− SCN neurons, but not to Vipr2−/− neurons. We conclude that VIP coordinates daily rhythms in the SCN and behavior by synchronizing a small population of pacemaking neurons and maintaining rhythmicity in a larger subset of neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mice with disrupted VIP/VPAC2 signaling express multiple circadian periods.
Figure 2: A reduced proportion of Vip−/− and Vipr2−/− SCN neurons fires rhythmically in vitro.
Figure 3: Genetic knockout of Vip or Vipr2 abolishes synchrony among rhythmic SCN neurons in the same culture (a) Representative rhythmic firing rate records from wild-type, Vipr2−/− or Vip−/− SCN neurons in the same high density culture.
Figure 4: The distributions of circadian periods of locomotor activity in mice (left) are similar to those of firing rate rhythms in SCN neurons (right) for the three genotypes.
Figure 5: Daily application of VPAC2 agonist Ro 25-1553 restores rhythmicity to Vip−/− SCN neurons.

Similar content being viewed by others

References

  1. Kalsbeek, A. & Buijs, R.M. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 309, 109–118 (2002).

    Article  CAS  Google Scholar 

  2. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  3. Van Gelder, R.N., Herzog, E.D., Schwartz, W.J. & Taghert, P.H. Circadian rhythms: in the loop at last. Science 300, 1534–1535 (2003).

    Article  CAS  Google Scholar 

  4. Welsh, D.K., Logothetis, D.E., Meister, M. & Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).

    Article  CAS  Google Scholar 

  5. Herzog, E.D., Takahashi, J.S. & Block, G.D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci. 1, 708–713 (1998).

    Article  CAS  Google Scholar 

  6. Honma, S., Shirakawa, T., Katsuno, Y., Namihira, M. & Honma, K.-I. Circadian periods of single suprachiasmatic neurons in rats. Neurosci. Lett. 250, 157–160 (1998).

    Article  CAS  Google Scholar 

  7. Yamaguchi, S. et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412 (2003).

    Article  CAS  Google Scholar 

  8. Quintero, J.E., Kuhlman, S.J. & McMahon, D.G. The biological clock nucleus: a multiphasic oscillator network regulated by light. J. Neurosci. 23, 8070–8076 (2003).

    Article  CAS  Google Scholar 

  9. Schaap, J. et al. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc. Natl. Acad. Sci. USA 100, 15994–15999 (2003).

    Article  CAS  Google Scholar 

  10. Herzog, E.D., Geusz, M.E., Khalsa, S.B.S., Straume, M. & Block, G.D. Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res. 757, 285–290 (1997).

    Article  CAS  Google Scholar 

  11. Liu, C. & Reppert, S.M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000).

    Article  CAS  Google Scholar 

  12. Colwell, C.S. Rhythmic coupling among cells in the suprachiasmatic nucleus. J. Neurobiol. 43, 379–388 (2000).

    Article  CAS  Google Scholar 

  13. Long, M.A., Jutras, M.J., Connors, B.W. & Burwell, R.D. Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat. Neurosci. 8, 61–66 (2005).

    Article  CAS  Google Scholar 

  14. Jiang, Z.G., Yang, Y.Q. & Allen, C.N. Tracer and electrical coupling of rat suprachiasmatic nucleus neurons. Neuroscience 77, 1059–1066 (1997).

    Article  CAS  Google Scholar 

  15. Nakamura, W., Honma, S., Shirakawa, T. & Honma, K.-I. Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur. J. Neurosci. 14, 666–674 (2001).

    Article  CAS  Google Scholar 

  16. Herzog, E.D., Aton, S.J., Numano, R., Sakaki, Y. & Tei, H. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J. Biol. Rhythms 19, 35–46 (2004).

    Article  Google Scholar 

  17. Abrahamson, E.E. & Moore, R.Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191 (2001).

    Article  CAS  Google Scholar 

  18. Cutler, D.J. et al. The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur. J. Neurosci. 17, 197–204 (2003).

    Article  Google Scholar 

  19. Reed, H.E. et al. Effects of vasoactive intestinal polypeptide on neurones of the rat suprachiasmatic nuclei in vitro. J. Neuroendocrinol. 14, 639–646 (2002).

    Article  CAS  Google Scholar 

  20. Cagampang, F.R., Sheward, W.J., Harmar, A.J., Piggins, H.D. & Coen, C.W. Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Brain Res. Mol. Brain Res. 54, 108–112 (1998).

    Article  CAS  Google Scholar 

  21. Piggins, H.D., Antle, M.C. & Rusak, B. Neuropeptides phase shift the mammalian circadian pacemaker. J. Neurosci. 15, 5612–5622 (1995).

    Article  CAS  Google Scholar 

  22. Watanabe, K., Vanecek, J. & Yamaoka, S. In vitro entrainment of the circadian rhythm of vasopressin-releasing cells in suprachiasmatic nucleus by vasoactive intestinal polypeptide. Brain Res. 877, 361–366 (2000).

    Article  CAS  Google Scholar 

  23. Reed, H.E., Meyer-Spasche, A., Cutler, D.J., Coen, C.W. & Piggins, H.D. Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur. J. Neurosci. 13, 839–843 (2001).

    Article  CAS  Google Scholar 

  24. Nielsen, H.S., Hannibal, J. & Fahrenkrug, J. Vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night. Eur. J. Neurosci. 15, 570–574 (2002).

    Article  Google Scholar 

  25. van den Pol, A.N. & Gorcs, T. Synaptic relationships between neurons containing vasopressin, gastrin-releasing peptide, vasoactive intestinal polypeptide, and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: dual ultrastructural immunocytochemistry with gold- substituted silver peroxidase. J. Comp. Neurol. 252, 507–521 (1986).

    Article  CAS  Google Scholar 

  26. Daikoku, S., Hisano, S. & Kagotani, Y. Neuronal associations in the rat suprachiasmatic nucleus demonstrated by immunoelectron microscopy. J. Comp. Neurol. 325, 559–571 (1992).

    Article  CAS  Google Scholar 

  27. Shen, S. et al. Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc. Natl. Acad. Sci. USA 97, 11575–11580 (2000).

    Article  CAS  Google Scholar 

  28. Hughes, A.T., Fahey, B., Cutler, D.J., Coogan, A.N. & Piggins, H.D. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor. J. Neurosci. 24, 3522–3526 (2004).

    Article  CAS  Google Scholar 

  29. Harmar, A.J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).

    Article  CAS  Google Scholar 

  30. Colwell, C.S. et al. Disrupted circadian rhythms in VIP and PHI deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R939–R949 (2003).

    Article  CAS  Google Scholar 

  31. Itri, J., Michel, S., Waschek, J.A. & Colwell, C.S. Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J. Neurophysiol. 92, 311–319 (2004).

    Article  Google Scholar 

  32. Honma, S., Nakamura, W., Shirakawa, T. & Honma, K. Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period. Neurosci. Lett. 358, 173–176 (2004).

    Article  CAS  Google Scholar 

  33. Moody, T.W., Hill, J.M. & Jensen, R.T. VIP as a trophic factor in the CNS and cancer cells. Peptides 24, 163–177 (2003).

    Article  CAS  Google Scholar 

  34. Kallo, I. et al. Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Eur. J Neurosci 19, 2201–2211 (2004).

    Article  Google Scholar 

  35. Peng, Y., Stoleru, D., Levine, J.D., Hall, J.C. & Rosbash, M. Drosophila free-running rhythms require intercellular communication. PLoS Biol. 1, E13 (2003).

    Article  Google Scholar 

  36. Lin, Y., Stormo, G.D. & Taghert, P.H. The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24, 7951–7957 (2004).

    Article  CAS  Google Scholar 

  37. Deboer, T., Vansteensel, M.J., Detari, L. & Meijer, J.H. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat. Neurosci. 10, 1086–1090 (2003).

    Article  Google Scholar 

  38. Mistlberger, R.E. Effects of daily schedules of forced activity on free-running rhythms in the rat. J. Biol. Rhythms 6, 71–80 (1991).

    Article  CAS  Google Scholar 

  39. Shinohara, K., Honma, S., Katsuno, Y., Abe, H. & Honma, K.-I. Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc. Natl. Acad. Sci. USA 92, 7396–7400 (1995).

    Article  CAS  Google Scholar 

  40. Ban, Y., Shigeyoshi, Y. & Okamura, H. Development of vasoactive intestinal peptide mRNA rhythm in the rat suprachiasmatic nucleus. J. Neurosci. 17, 3920–3931 (1997).

    Article  CAS  Google Scholar 

  41. Dardente, H. et al. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Brain Res. Mol. Brain Res. 124, 143–151 (2004).

    Article  CAS  Google Scholar 

  42. Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M. & Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99, 7728–7733 (2002).

    Article  CAS  Google Scholar 

  43. Akiyama, M., Minami, Y., Nakajima, T., Moriya, T. & Shibata, S. Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPer1 in the mouse cerebellar granule cell culture. J. Neurochem. 78, 499–508 (2001).

    Article  CAS  Google Scholar 

  44. Itri, J. & Colwell, C.S. Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J. Neurophysiol. 90, 1589–1597 (2003).

    Article  CAS  Google Scholar 

  45. Ikeda, M. et al. Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38, 253–263 (2003).

    Article  CAS  Google Scholar 

  46. Granados-Fuentes, D., Saxena, M.T., Prolo, L.M., Aton, S.J. & Herzog, E.D. Olfactory bulb neurons express functional, entrainable circadian rhythms. Eur. J. Neurosci. 19, 898–906 (2004).

    Article  Google Scholar 

  47. Banker, G. & Goslin, K. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 75–118 (MIT Press, Cambridge, Massachusetts, USA, 1991).

    Google Scholar 

  48. Potter, S.M. & DeMarse, T.B. A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001).

    Article  CAS  Google Scholar 

  49. Sokolove, P.G. & Bushell, W.N. The chi square periodogram: its utility for analysis of circadian rhythms. J. Theor. Biol. 72, 131–160 (1978).

    Article  CAS  Google Scholar 

  50. Batschelet, E. in Mathematics in Biology (eds. Sibson, R. & Cohen, J.E.) 31–54 (Academic, New York, 1981).

    Google Scholar 

Download references

Acknowledgements

We thank P. Taghert, R. Van Gelder, D. Granados-Fuentes, and U. Abraham for helpful discussions; D. Piatchek and J. Diani of the Washington University Hilltop animal facility; H. Dave, T. Fadelu, and L. Prolo for expert technical assistance and animal care; and P. Robberecht (University of Brussels) for providing VPAC2 agonist Ro 25-1553. This work was supported by a US National Science Foundation graduate research fellowship (S.J.A.) and by the National Institutes of Health (grants MH63104, MH62517 and MH073302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik D Herzog.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aton, S., Colwell, C., Harmar, A. et al. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8, 476–483 (2005). https://doi.org/10.1038/nn1419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing