Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch signaling in the mammalian central nervous system: insights from mouse mutants

An Erratum to this article was published on 01 October 2005

Abstract

The Notch pathway, although originally identified in fruit flies, is now among the most heavily studied in mammalian biology. In mice, loss-of-function and gain-of-function work has demonstrated that Notch signaling is essential both during development and in the adult in a multitude of tissues. Prominent among these is the CNS, where Notch has been implicated in processes ranging from neural stem cell regulation to learning and memory. Here we review the role of Notch in the mammalian CNS by focusing specifically on mutations generated in mice. These mutations have provided critical insight into Notch function in the CNS and have led to the identification of promising new directions that are likely to generate important discoveries in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Notch pathway in mammals.
Figure 2: Analyses of mouse mutants have supported many roles for Notch signaling in the developing and adult CNS.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Gaiano, N. & Fishell, G. The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Swiatek, P.J., Lindsell, C.E., del Amo, F.F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Conlon, R.A., Reaume, A.G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  PubMed  Google Scholar 

  5. Hamada, Y. et al. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415–3424 (1999).

    CAS  PubMed  Google Scholar 

  6. McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).

    CAS  PubMed  Google Scholar 

  7. Krebs, L.T. et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 37, 139–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Krebs, L.T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoon, K. et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497–9506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hrabe de Angelis, M., McIntyre, J., II & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kusumi, K. et al. Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis 39, 115–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Duarte, A. et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 18, 2474–2478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bulman, M.P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, R. et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 12, 1046–1057 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sidow, A. et al. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389, 722–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Yun, K. et al. Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development 129, 5029–5040 (2002).

    CAS  PubMed  Google Scholar 

  20. Grandbarbe, L. et al. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130, 1391–1402 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Zhong, W. et al. Mouse numb is an essential gene involved in cortical neurogenesis. Proc. Natl. Acad. Sci. USA 97, 6844–6849 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zilian, O. et al. Multiple roles of mouse Numb in tuning developmental cell fates. Curr. Biol. 11, 494–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Petersen, P.H., Zou, K., Hwang, J.K., Jan, Y.N. & Zhong, W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419, 929–934 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Petersen, P.H., Zou, K., Krauss, S. & Zhong, W. Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat. Neurosci. 7, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, J. et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Handler, M., Yang, X. & Shen, J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127, 2593–2606 (2000).

    CAS  PubMed  Google Scholar 

  27. Hartmann, D., De Strooper, B. & Saftig, P. Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9, 719–727 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat. Cell Biol. 2, 515–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Li, H.S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Klein, A.L., Zilian, O., Suter, U. & Taylor, V. Murine numb regulates granule cell maturation in the cerebellum. Dev. Biol. 266, 161–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, E.J. et al. Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization. Genes Dev. 19, 138–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saura, C.A. et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, N., Norton, C.R. & Gridley, T. Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice. Genesis 33, 21–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Oka, C. et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  36. Ohtsuka, T. et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Zine, A. et al. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J. Neurosci. 21, 4712–4720 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kageyama, R. & Ohtsuka, T. The Notch-Hes pathway in mammalian neural development. Cell Res. 9, 179–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez Arias, A., Zecchini, V. & Brennan, K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 12, 524–533 (2002).

    Article  PubMed  Google Scholar 

  43. Wang, S. & Barres, B.A. Up a notch: instructing gliogenesis. Neuron 27, 197–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Redmond, L., Oh, S.R., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Franklin, J.L. et al. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 9, 1448–1457 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, H. et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 31, 713–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y. et al. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc. Natl. Acad. Sci. USA 101, 9458–9462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costa, R.M., Honjo, T. & Silva, A.J. Learning and memory deficits in Notch mutant mice. Curr. Biol. 13, 1348–1354 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Selkoe, D. & Kopan, R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, L. et al. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat. Genet. 26, 484–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Fryer, C.J., White, J.B. & Jones, K.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Roegiers, F. & Jan, Y.N. Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5, 1265–1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Lai, E.C. Protein degradation: four E3s for the notch pathway. Curr. Biol. 12, R74–R78 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Baron, M. An overview of the Notch signalling pathway. Semin. Cell Dev. Biol. 14, 113–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Haines, N. & Irvine, K.D. Glycosylation regulates Notch signalling. Nat. Rev. Mol. Cell Biol. 4, 786–797 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Furukawa, T., Maruyama, S., Kawaichi, M. & Honjo, T. The Drosophila homolog of the immunoglobulin recombination signal-binding protein regulates peripheral nervous system development. Cell 69, 1191–1197 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Schweisguth, F. & Posakony, J.W. Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell 69, 1199–1212 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. de la Pompa, J.L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  62. Ishibashi, M. et al. Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J. 13, 1799–1805 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Furukawa, T., Mukherjee, S., Bao, Z.Z., Morrow, E.M. & Cepko, C.L. rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26, 383–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Feder, J.N., Jan, L.Y. & Jan, Y.N. A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation. Mol. Cell. Biol. 13, 105–113 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Solecki, D.J., Liu, X.L., Tomoda, T., Fang, Y. & Hatten, M.E. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31, 557–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Lutolf, S., Radtke, F., Aguet, M., Suter, U. & Taylor, V. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129, 373–385 (2002).

    CAS  PubMed  Google Scholar 

  67. Hojo, M. et al. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522 (2000).

    CAS  PubMed  Google Scholar 

  68. Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sakamoto, M., Hirata, H., Ohtsuka, T., Bessho, Y. & Kageyama, R. The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J. Biol. Chem. 278, 44808–44815 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patten, B.A., Peyrin, J.M., Weinmaster, G. & Corfas, G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci. 23, 6132–6140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmid, R.S. et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc. Natl. Acad. Sci. USA 100, 4251–4256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klezovitch, O., Fernandez, T.E., Tapscott, S.J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 18, 559–571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamamoto, N. et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J. Biol. Chem. 276, 45031–45040 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J. Biol. Chem. 279, 9417–9423 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. De Strooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38, 9–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Zhong, W. Diversifying neural cells through order of birth and asymmetry of division. Neuron 37, 11–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Hori, K. et al. Drosophila deltex mediates suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Development 131, 5527–5537 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Donoviel, D.B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McGill, M.A. & McGlade, C.J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Sade, H., Krishna, S. & Sarin, A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J. Biol. Chem. 279, 2937–2944 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Zhong, W., Feder, J.N., Jiang, M.M., Jan, L.Y. & Jan, Y.N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Verdi, J.M. et al. Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc. Natl. Acad. Sci. USA 96, 10472–10476 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J.A. The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Giniger, E. A role for Abl in Notch signaling. Neuron 20, 667–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Stump, G. et al. Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech. Dev. 114, 153–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Ni, C.Y., Murphy, M.P., Golde, T.E. & Carpenter, G. gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Starz-Gaiano and H. Mason for critical reading of the manuscript. N.G. is supported by grants from the Burroughs Wellcome fund, the Sidney Kimmel Foundation for Cancer Research and the National Institute of Neurological Disorders and Stroke (NINDS) of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, K., Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8, 709–715 (2005). https://doi.org/10.1038/nn1475

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing