Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

fMRI evidence for the neural representation of faces

Abstract

fMRI (functional magnetic resonance imaging) studies on humans have shown a cortical area, the fusiform face area, that is specialized for face processing. An important question is how faces are represented within this area. This study provides direct evidence for a representation in which individual faces are encoded by their direction (facial identity) and distance (distinctiveness) from a prototypical (mean) face. When facial geometry (head shape, hair line, internal feature size and placement) was varied, the fMRI signal increased with increasing distance from the mean face. Furthermore, adaptation of the fMRI signal showed that the same neural population responds to faces falling along single identity axes within this space.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of face space.
Figure 2: fMRI signal change as a function of face geometry relative to the mean face.
Figure 3: fMRI signal change as a function of face geometry relative to a non-mean face (squares and heavy solid line).
Figure 4: Neural sampling shown by fMRI adaptation.

Similar content being viewed by others

References

  1. Desimone, R. Face-selective cells in the temporal cortex of monkeys. J. Cogn. Neurosci. 3, 1–8 (1991).

    Article  CAS  Google Scholar 

  2. Gross, C.G. Representation of visual-stimuli in inferior temporal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 335, 3–10 (1992).

    Article  CAS  Google Scholar 

  3. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Valentine, T. A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q. J. Exp. Psychol. A 43, 161–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Leopold, D.A., O'Toole, A.J., Vetter, T. & Blanz, V. Prototype-referenced shape encoding revealed by high-level after effects. Nat. Neurosci. 4, 89–94 (2001).

    Article  CAS  Google Scholar 

  7. Tanaka, J., Giles, M., Kremen, S. & Simon, V. Mapping attractor fields in face space: the atypicality bias in face recognition. Cognition 68, 199–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, H.R., Loffler, G. & Wilkinson, F. Synthetic faces, face cubes, and the geometry of face space. Vision Res. 42, 2909–2923 (2002).

    Article  Google Scholar 

  9. Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst.) 107, 293–321 (2001).

    Article  CAS  Google Scholar 

  10. McCarthy, G., Puce, A., Belger, A. & Allison, T. Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Naka, K.I. & Rushton, W.A. S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol. 185, 536–555 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. Sclar, G., Maunsell, J.R. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990).

    Article  CAS  Google Scholar 

  13. Boynton, G.M., Demb, J.B., Glover, G.H. & Heeger, D.J. Neuronal basis of contrast discrimination. Vision Res. 39, 257–269 (1999).

    Article  CAS  Google Scholar 

  14. Sheth, S.A. et al. Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42, 347–355 (2004).

    Article  CAS  Google Scholar 

  15. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  Google Scholar 

  16. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of the monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  17. Albrecht, D.G. & Hamilton, D.B. Striate cortex of monkey and cat: contrast response functions. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  Google Scholar 

  18. Bruce, V., Doyle, T., Dench, N. & Burton, M. Remembering facial configurations. Cognition 38, 109–144 (1991).

    Article  CAS  Google Scholar 

  19. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  Google Scholar 

  20. Gauthier, I., Tarr, M.J., Anderson, A.W., Skudlarski, P. & Gore, J.C. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    Article  CAS  Google Scholar 

  21. Duchaine, B.C., Dingle, K., Butterworth, E. & Nakayama, K. Normal greeble learning in a severe case of developmental prosopagnosia. Neuron 43, 469–473 (2004).

    Article  CAS  Google Scholar 

  22. Kayaert, G., Biederman, I. & Vogels, R. Shape tuning in macaque inferior temporal cortex. J. Neurosci. 23, 3016–3027 (2003).

    Article  CAS  Google Scholar 

  23. Bruce, V. & Young, A. In the Eye of the Beholder: the Science of Face Perception (Oxford University Press, Oxford, 1998).

    Google Scholar 

  24. Nasanen, R. Spatial frequency bandwidth used in the recognition of facial images. Vision Res. 39, 3824–3833 (1999).

    Article  CAS  Google Scholar 

  25. Gold, J., Bennett, P.J. & Sekuler, A.B. Identification of band-pass filtered letters and faces by human and ideal observers. Vision Res. 39, 3537–3560 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Engineering and Physical Sciences Research Council grant GR/T27303/01to G.L., US National Institutes of Health grant EY002158 to H.R.W. and Natural Sciences and Engineering Research Council of Canada grant OP0007551 to F.W. We are grateful to G. Gordon for sharing her thoughts on several earlier versions of this manuscript and H. Goltz for valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Loffler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loffler, G., Yourganov, G., Wilkinson, F. et al. fMRI evidence for the neural representation of faces. Nat Neurosci 8, 1386–1391 (2005). https://doi.org/10.1038/nn1538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing