Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FARP2 triggers signals for Sema3A-mediated axonal repulsion

Abstract

Sema3A, a prototypical semaphorin, acts as a chemorepellent or a chemoattractant for axons by activating a receptor complex comprising neuropilin-1 as the ligand-binding subunit and plexin-A1 as the signal-transducing subunit. How the signals downstream of plexin-A1 are triggered upon Sema3A stimulation, however, is unknown. Here we show that, in the presence of neuropilin-1, the FERM domain–containing guanine nucleotide exchange factor (GEF) FARP2 associates directly with plexin-A1. Sema3A binding to neuropilin-1 induces the dissociation of FARP2 from plexin-A1, resulting in activation of FARP2's Rac GEF activity, Rnd1 recruitment to plexin-A1, and downregulation of R-Ras. Simultaneously, the FERM domain of FARP2 sequesters phosphatidylinositol phosphate kinase type I isoform PIPKIγ661 from talin, thereby inhibiting its kinase activity. These activities are required for Sema3A-mediated repulsion of outgrowing axons and suppression of neuronal adhesion. We therefore conclude that FARP2 is a key molecule involved in the response of neuronal growth cones to class-3 semaphorins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plexin-A1 binds to FARP2 and regulates its Rac GEF activity.
Figure 2: RacGEF activity of FARP2 is required for the Rnd1-mediated reduction of R-Ras-GTP in Sema3A–plexin-A1 signaling.
Figure 3: FARP2 binding to PIPKIγ661 reciprocally downregulates their activities.
Figure 4: FARP2 is required for Sema3A-mediated repulsion of neurite outgrowth.
Figure 5: FARP2 and PIPKIγ661 regulate the inhibitory effect of Sema3A on integrin function.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  2. Pasterkamp, R.J. & Kolodkin, A.L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol. 13, 79–89 (2003).

    Article  CAS  Google Scholar 

  3. Maestrini, E. et al. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc. Natl. Acad. Sci. USA 93, 674–678 (1996).

    Article  CAS  Google Scholar 

  4. Godenschwege, T.A., Hu, H., Shan-Crofts, X., Goodman, C.S. & Murphey, R.K. Bi-directional signaling by Semaphorin 1a during central synapse formation in Drosophila. Nat. Neurosci. 5, 1294–1301 (2002).

    Article  CAS  Google Scholar 

  5. Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat. Cell Biol. 6, 1204–1211 (2004).

    Article  CAS  Google Scholar 

  6. Suter, D.M. & Forscher, P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97–113 (2000).

    Article  CAS  Google Scholar 

  7. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  Google Scholar 

  8. Aurandt, J., Vikis, H.G., Gutkind, J.S., Ahn, N. & Guan, K.L. The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. Proc. Natl. Acad. Sci. USA 99, 12085–12090 (2002).

    Article  CAS  Google Scholar 

  9. Swiercz, J.M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35, 51–63 (2002).

    Article  CAS  Google Scholar 

  10. Perrot, V., Vazquez-Prado, J. & Gutkind, J.S. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J. Biol. Chem. 277, 43115–43120 (2002).

    Article  CAS  Google Scholar 

  11. Jin, Z. & Strittmatter, S.M. Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256–6263 (1997).

    Article  CAS  Google Scholar 

  12. Kuhn, T.B., Brown, M.D., Wilcox, C.L., Raper, J.A. & Bamburg, J.R. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965–1975 (1999).

    Article  CAS  Google Scholar 

  13. Vastrik, I., Eickholt, B.J., Walsh, F.S., Ridley, A. & Doherty, P. Sema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17–32. Curr. Biol. 9, 991–998 (1999).

    Article  CAS  Google Scholar 

  14. Turner, L.J., Nicholls, S. & Hall, A. The activity of the plexin-A1 receptor is regulated by Rac. J. Biol. Chem. 279, 33199–33205 (2004).

    Article  CAS  Google Scholar 

  15. Zanata, S.M., Hovatta, I., Rohm, B. & Puschel, A.W. Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J. Neurosci. 22, 471–477 (2002).

    Article  CAS  Google Scholar 

  16. Oinuma, I., Katoh, H., Harada, A. & Negishi, M. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells. J. Biol. Chem. 278, 25671–25677 (2003).

    Article  CAS  Google Scholar 

  17. Legg, J.W. & Isacke, C.M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol. 8, 705–708 (1998).

    Article  CAS  Google Scholar 

  18. Kubo, T. et al. A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling. J. Neurosci. 22, 8504–8513 (2002).

    Article  CAS  Google Scholar 

  19. Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305, 862–865 (2004).

    Article  CAS  Google Scholar 

  20. Oinuma, I., Katoh, H. & Negishi, M. Molecular dissection of the semaphorin 4D receptor plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. J. Neurosci. 24, 11473–11480 (2004).

    Article  CAS  Google Scholar 

  21. Ling, K., Doughman, R.L., Firestone, A.J., Bunce, M.W. & Anderson, R.A. Type-I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  Google Scholar 

  22. Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 420, 85–89 (2002).

    Article  CAS  Google Scholar 

  23. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).

    Article  CAS  Google Scholar 

  24. Gallo, G. & Letourneau, P.C. Axon guidance: GTPases help axons reach their targets. Curr. Biol. 8, R80–R82 (1998).

    Article  CAS  Google Scholar 

  25. Lin, M.Z. & Greenberg, M.E. Orchestral maneuvers in the axon: trio and the control of axon guidance. Cell 101, 239–242 (2000).

    Article  CAS  Google Scholar 

  26. Zhang, Z., Vuori, K., Wang, H., Reed, J.C. & Ruoslahti, E. Integrin activation by R-ras. Cell 85, 61–69 (1996).

    Article  CAS  Google Scholar 

  27. Keely, P.J., Rusyn, E.V., Cox, A.D. & Parise, L.V. R-Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. J. Cell Biol. 145, 1077–1088 (1999).

    Article  CAS  Google Scholar 

  28. Serini, G. et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424, 391–397 (2003).

    Article  CAS  Google Scholar 

  29. Grabham, P.W. & Goldberg, D.J. Nerve growth factor stimulates the accumulation of beta1 integrin at the tips of filopodia in the growth cones of sympathetic neurons. J. Neurosci. 17, 5455–5465 (1997).

    Article  CAS  Google Scholar 

  30. Grabham, P.W., Foley, M., Umeojiako, A. & Goldberg, D.J. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones. J. Cell Sci. 113, 3003–3012 (2000).

    CAS  Google Scholar 

  31. Koyano, Y. et al. Molecular cloning and characterization of CDEP, a novel human protein containing the ezrin-like domain of the band 4.1 superfamily and the Dbl homology domain of Rho guanine nucleotide exchange factors. Biochem. Biophys. Res. Commun. 241, 369–375 (1997).

    Article  CAS  Google Scholar 

  32. Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192 (1999).

    Article  CAS  Google Scholar 

  33. Rohm, B., Rahim, B., Kleiber, B., Hovatta, I. & Puschel, A.W. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett. 486, 68–72 (2000).

    Article  CAS  Google Scholar 

  34. Nayal, A., Webb, D.J. & Horwitz, A.F. Talin: an emerging focal point of adhesion dynamics. Curr. Opin. Cell Biol. 16, 94–98 (2004).

    Article  CAS  Google Scholar 

  35. Vikis, H.G., Li, W. & Guan, K.L. The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev. 16, 836–845 (2002).

    Article  CAS  Google Scholar 

  36. Li, Z., Aizenman, C.D. & Cline, H.T. Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33, 741–750 (2002).

    Article  CAS  Google Scholar 

  37. Goshima, Y., Nakamura, F., Strittmatter, P. & Strittmatter, S.M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).

    Article  CAS  Google Scholar 

  38. Terman, J.R., Mao, T., Pasterkamp, R.J., Yu, H.H. & Kolodkin, A.L. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109, 887–900 (2002).

    Article  CAS  Google Scholar 

  39. Toyofuku, T. et al. Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev. 18, 435–447 (2004).

    Article  CAS  Google Scholar 

  40. Zheng, Y., Hart, M.J. & Cerione, R.A. Guanine nucleotide exchange catalyzed by dbl oncogene product. Methods Enzymol. 256, 77–84 (1995).

    Article  CAS  Google Scholar 

  41. Sander, E.E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398 (1998).

    Article  CAS  Google Scholar 

  42. van Triest, M., de Rooij, J. & Bos, J.L. Measurement of GTP-bound Ras-like GTPases by activation-specific probes. Methods Enzymol. 333, 343–348 (2001).

    Article  CAS  Google Scholar 

  43. Chen, H., He, Z., Bagri, A. & Tessier-Lavigne, M. Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21, 1283–1290 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kubota for her assistance. This study was supported by research grants from the Ministry of Education, Science and Culture, Japan (to T.T., A.K. and H.K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshihiko Toyofuku or Hitoshi Kikutani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Biochemical analysis of the binding of FARP2 to type A-plexins (PDF 33 kb)

Supplementary Fig. 2

The Rac activity and R-Ras activity in neurons and transfected cells after Sema3A stimulation (PDF 43 kb)

Supplementary Fig. 3

The R-Ras GAP activity of Plexin-A1 (PDF 23 kb)

Supplementary Fig. 4

The effect of dominant negative Rac (RacT17N) on the Rnd1 binding to Plexin-A1 (PDF 20 kb)

Supplementary Fig. 5

The biological role of FARP2 in Sema3A-induced axonal outgrowth and growth cone collapse (PDF 99 kb)

Supplementary Fig. 6

The effect of constitutively active Rac (RacQ61L) on morphology of transfected cell and growth cone of neuron (PDF 82 kb)

Supplementary Fig. 7

NGF induces R-Ras activation in DRG neurons (PDF 11 kb)

Supplementary Fig. 8

Sema3A and downstream signals regulate the b1-integrin activation (PDF 31 kb)

Supplementary Fig. 9

A schematic diagram depicting the roles of FARP2 in the initial steps of Sema3A-Plexin-A1 signaling. (PDF 50 kb)

Supplementary Fig. 10

Adenovirus-mediated overexpression or knock-down of target proteins in DRG neurons (PDF 44 kb)

Supplementary Fig. 11

Incorporation of siRNA into DRG neurons (PDF 32 kb)

Supplementary Table 1

Lists of siRNAs used in this experiment (PDF 17 kb)

Supplementary Table 2

Lists of template DNAs for synthesis of shRNAs used in this experiment (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyofuku, T., Yoshida, J., Sugimoto, T. et al. FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 8, 1712–1719 (2005). https://doi.org/10.1038/nn1596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing