Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1

Abstract

Local protein synthesis regulates the turning of growth cones to guidance cues, yet little is known about which proteins are synthesized or how they contribute to directional steering. Here we show that β-actin mRNA resides in Xenopus laevis retinal growth cones where it binds to the RNA-binding protein Vg1RBP. Netrin-1 induces the movement of Vg1RBP granules into filopodia, suggesting that it may direct the localization and translation of mRNAs in growth cones. Indeed, a gradient of netrin-1 activates a translation initiation regulator, eIF-4E-binding protein 1 (4EBP), asymmetrically and triggers a polarized increase in β-actin translation on the near side of the growth cone before growth cone turning. Inhibition of β-actin translation abolishes both the asymmetric rise in β-actin and attractive, but not repulsive, turning. Our data suggest that newly synthesized β-actin, concentrated near sites of signal reception, provides the directional bias for polymerizing actin in the direction of an attractive stimulus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vg1RBP is expressed in retinal growth cones and interacts with β-actin mRNA.
Figure 2: Netrin-1 or cell-contact induce translocation of Vg1RBP-eGFP into filopodia.
Figure 3: Netrin-1 induces β-actin translation driven by its 3′ UTR.
Figure 4: Vg1RBP granules move into filopodia closest to a netrin-1 source.
Figure 5: Netrin-1 gradient causes asymmetric activation of translation regulator.
Figure 6: Netrin-1 gradient elicits asymmetric increase of β-actin across the growth cone.
Figure 7: β-actin morpholinos block netrin-1–induced attractive turning.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Henley, J. & Poo, M.M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–330 (2004).

    Article  CAS  Google Scholar 

  2. Guirland, C., Suzuki, S., Kojima, M., Lu, B. & Zheng, J.Q. Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42, 51–62 (2004).

    Article  CAS  Google Scholar 

  3. Wen, Z., Guirland, C., Ming, G.L. & Zheng, J.Q.A. CaMKII/calcineurin switch controls the direction of Ca2+-dependent growth cone guidance. Neuron 43, 835–846 (2004).

    Article  CAS  Google Scholar 

  4. Zheng, J.Q. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403, 89–93 (2000).

    Article  CAS  Google Scholar 

  5. Li, Y. et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894–898 (2005).

    Article  CAS  Google Scholar 

  6. Lohof, A.M., Quillan, M., Dan, Y. & Poo, M.M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992).

    Article  CAS  Google Scholar 

  7. Ming, G.L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    Article  CAS  Google Scholar 

  8. Piper, M. et al. Signaling mechanisms underlying slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228 (2006).

    Article  CAS  Google Scholar 

  9. Wu, K.Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  Google Scholar 

  10. Campbell, D.S. & Holt, C.E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

  11. Shestakova, E.A., Singer, R.H. & Condeelis, J. The physiological significance of β-actin mRNA localization in determining cell polarity and directional motility. Proc. Natl. Acad. Sci. USA 98, 7045–7050 (2001).

    Article  CAS  Google Scholar 

  12. Bassell, G.J. et al. Sorting of β-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998).

    Article  CAS  Google Scholar 

  13. Willis, D. et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci. 25, 778–791 (2005).

    Article  CAS  Google Scholar 

  14. Zhang, H.L. et al. Neurotrophin-induced transport of a β-actin mRNP complex increases β-actin levels and stimulates growth cone motility. Neuron 31, 261–275 (2001).

    Article  CAS  Google Scholar 

  15. Zhang, H.L., Singer, R.H. & Bassell, G.J. Neurotrophin regulation of β-actin mRNA and protein localization within growth cones. J. Cell Biol. 147, 59–70 (1999).

    Article  CAS  Google Scholar 

  16. Yuan, X.B. et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat. Cell Biol. 5, 38–45 (2003).

    Article  CAS  Google Scholar 

  17. Gebauer, F. & Hentze, M.W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Article  CAS  Google Scholar 

  18. Kloc, M., Zearfoss, N.R. & Etkin, L.D. Mechanisms of subcellular mRNA localization. Cell 108, 533–544 (2002).

    Article  CAS  Google Scholar 

  19. Condeelis, J. & Singer, R.H. How and why does β-actin mRNA target? Biol. Cell 97, 97–110 (2005).

    Article  CAS  Google Scholar 

  20. Huttelmaier, S. et al. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    Article  Google Scholar 

  21. Yisraeli, J.K. VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol. Cell. 97, 87–96 (2005).

    Article  CAS  Google Scholar 

  22. Sundell, C.L. & Singer, R.H. Requirement of microfilaments in sorting of actin messenger RNA. Science 253, 1275–1277 (1991).

    Article  CAS  Google Scholar 

  23. Lopez de Heredia, M. & Jansen, R.P. mRNA localization and the cytoskeleton. Curr. Opin. Cell Biol. 16, 80–85 (2004).

    Article  Google Scholar 

  24. Deiner, M.S. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997).

    Article  CAS  Google Scholar 

  25. Campbell, D.S. et al. Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J. Neurosci. 21, 8538–8547 (2001).

    Article  CAS  Google Scholar 

  26. Hopker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  Google Scholar 

  27. Takei, N., Kawamura, M., Hara, K., Yonezawa, K. & Nawa, H. Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: comparison with the effects of insulin. J. Biol. Chem. 276, 42818–42825 (2001).

    Article  CAS  Google Scholar 

  28. Wilkie, G.S., Dickson, K.S. & Gray, N.K. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem. Sci. 28, 182–188 (2003).

    Article  CAS  Google Scholar 

  29. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  Google Scholar 

  30. de la Torre, J.R. et al. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19, 1211–1224 (1997).

    Article  CAS  Google Scholar 

  31. Gingras, A.C. et al. Hierarchical phosphorylation of the translation inhibitor 4E–BP1. Genes Dev. 15, 2852–2864 (2001).

    Article  CAS  Google Scholar 

  32. Eng, H., Lund, K. & Campenot, R.B. Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J. Neurosci. 19, 1–9 (1999).

    Article  CAS  Google Scholar 

  33. Ooashi, N., Futatsugi, A., Yoshihara, F., Mikoshiba, K. & Kamiguchi, H. Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. J. Cell Biol. 170, 1159–1167 (2005).

    Article  CAS  Google Scholar 

  34. Kuhn, T.B., Brown, M.D., Wilcox, C.L., Raper, J.A. & Bamburg, J.R. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965–1975 (1999).

    Article  CAS  Google Scholar 

  35. Hansen, W.J., Cowan, N.J. & Welch, W.J. Prefoldin-nascent chain complexes in the folding of cytoskeletal proteins. J. Cell Biol. 145, 265–277 (1999).

    Article  CAS  Google Scholar 

  36. Wang, J. et al. Reversible glutathionylation regulates actin polymerization in A431 cells. J. Biol. Chem. 276, 47763–47766 (2001).

    Article  CAS  Google Scholar 

  37. Kislauskis, E.H., Zhu, X. & Singer, R.H. β-actin messenger RNA localization and protein synthesis augment cell motility. J. Cell Biol. 136, 1263–1270 (1997).

    Article  CAS  Google Scholar 

  38. Lewis, A.K. & Bridgman, P.C. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J. Cell Biol. 119, 1219–1243 (1992).

    Article  CAS  Google Scholar 

  39. Oleynikov, Y. & Singer, R.H. Real-time visualization of ZBP1 association with β-actin mRNA during transcription and localization. Curr. Biol. 13, 199–207 (2003).

    Article  CAS  Google Scholar 

  40. Yao, J., Sasaki, Y., Wen, Z., Bassell, G.J. & Zheng, J.Q. An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat. Neurosci. 9, 1265–1273 (2006).

    Article  CAS  Google Scholar 

  41. Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L. & Sonenberg, N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. USA 93, 1065–1070 (1996).

    Article  CAS  Google Scholar 

  42. Brunet, I. et al. The transcription factor Engrailed-2 guides retinal axons. Nature 438, 94–98 (2005).

    Article  CAS  Google Scholar 

  43. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    Article  CAS  Google Scholar 

  44. Liu, G. et al. Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat. Neurosci. 7, 1222–1232 (2004).

    Article  CAS  Google Scholar 

  45. Fan, J. & Raper, J.A. Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 14, 263–274 (1995).

    Article  CAS  Google Scholar 

  46. Shirasaki, R., Mirzayan, C., Tessier-Lavigne, M. & Murakami, F. Guidance of circumferentially growing axons by netrin-dependent and -independent floor plate chemotropism in the vertebrate brain. Neuron 17, 1079–1088 (1996).

    Article  CAS  Google Scholar 

  47. Zhang, Q. et al. Vg1 RBP intracellular distribution and evolutionarily conserved expression at multiple stages during development. Mech. Dev. 88, 101–106 (1999).

    Article  CAS  Google Scholar 

  48. Yaniv, K., Fainsod, A., Kalcheim, C. & Yisraeli, J.K. The RNA-binding protein Vg1 RBP is required for cell migration during early neural development. Development 130, 5649–5661 (2003).

    Article  CAS  Google Scholar 

  49. Chang, P. et al. Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol. Biol. Cell 15, 4669–4681 (2004).

    Article  CAS  Google Scholar 

  50. Blichenberg, A. et al. Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J. Neurosci. 19, 8818–8829 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Spira for suggesting use of Kaede–β-actin 3′ UTR; R. Adams for suggesting use of the Zenon labeling kit; J. Ireland and B. Kvinlaug for preliminary data on β-actin translation; J. Zheng, D. Campbell and L. Strochlic for sharing unpublished data; A. Dwivedy, I. Pradel and K. Zivraj for technical assistance; L. Poggi and J. Falk for help with image analysis; and W. Harris, M. Piper and D. Campbell for comments on the manuscript. This work was supported by a Croucher Scholarship (K.-M.L.), an EMBO Long Term Fellowship (F.P.G.v.H.), an NSF Graduate Research Fellowship (A.C.L.), a BBSRC Studentship (R.A.) and a Wellcome Trust Programme Grant (C.E.H.).

Author information

Authors and Affiliations

Authors

Contributions

K.-M.L. did the experiments on β-actin synthesis and function in Figures 3, 6, 7 and Supplementary Figure 2. F.P.G.v.H. did the experiments on Vg1RBP in Figures 1, 2, 4, Supplementary Figures 1 and 2k–o and Supplementary Videos 1,2,3,4. A.C.L. did the gradient assays on 4EBP and β-actin in Figures 5 and 6e. R.A. and N.S. provided Vg1RBP reagents and constructs and discussed experiments. K.-M.L., F.P.G.v.H., A.C.L. and C.E.H. wrote the manuscript and discussed experiments.

Corresponding author

Correspondence to Christine E Holt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Netrin-1 induces transport of endogenous Vg1RBP and β-actin mRNA into filopodia. (PDF 2415 kb)

Supplementary Fig. 2

Differential β-actin translation in response to attractive and repulsive cues. (PDF 2725 kb)

Supplementary Fig. 3

Model for polarized synthesis of β-actin. (PDF 696 kb)

Supplementary Video 1

Movement of Vg1RBP-eGFP granules in retinal growth cones. Retinal explants taken from stage 33/34 embryos injected with Vg1RBP-eGFP mRNA were cultured for 24 hours and analyzed in real time. Images were taken every 12 seconds. Vg1RBP-eGFP granules show bidirectional movement in the axon shaft, growth cone central domain and filopodia. (MOV 1151 kb)

Supplementary Video 2

The effect of cytochalasin D on Vg1RBP-eGFP granules movement. Live imaging of Vg1RBP-eGFP positive growth cones. Bath application of cytochalasin D (0.1 μM) results in retraction of Vg1RBP-eGFP granules from the growth cone. Images were taken every 12 seconds. (MOV 598 kb)

Supplementary Video 3

Movement of Vg1RBP-eGFP granules into filopodial contact sites. Live imaging of Vg1RBP-eGFP positive growth cones. The arrows indicate anterograde transport of a Vg1RBP-eGFP granule moving to the contact site, followed by a pause and retrograde movement to the base of the filopodium. Images were taken every 12 seconds. (MOV 1297 kb)

Supplementary Video 4

Netrin-1 induces transport of Vg1RBP-eGFP granules into filopodia. Vg1RBP-eGFP expressing retinal growth cones were stimulated with netrin-1 after 5 minutes and followed in real time. Images were taken every 12 seconds for 15 minutes. The arrows indicate filopodia in which the increased transport of Vg1RBP-eGFP granules is very prominent. (MOV 1675 kb)

Supplementary Methods (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, KM., van Horck, F., Lin, A. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9, 1247–1256 (2006). https://doi.org/10.1038/nn1775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing