Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype

An Erratum to this article was published on 01 June 2007

This article has been updated

Abstract

What is the relationship between sodium channel function, neuronal function and clinical status in channelopathies of the nervous system? Given the central role of sodium channels in the generation of neuronal activity, channelopathies involving sodium channels might be expected to cause either enhanced sodium channel function and neuronal hyperexcitability associated with positive clinical manifestations such as seizures, or attenuated channel function and neuronal hypoexcitability associated with negative clinical manifestations such as paralysis. In this article, I review observations showing that changes in neuronal function and clinical status associated with channelopathies are not necessarily predictable solely from the altered physiological properties of the mutated channel itself. I discuss evidence showing that cell background acts as a filter that can strongly influence the effects of ion channel mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between sodium channel function, neuronal function and clinical status.
Figure 2: The L858H erythromelalgia mutation depolarizes DRG neurons and renders them hyperexcitable.
Figure 3: The L858H erythromelalgia mutation depolarizes sympathetic ganglion neurons and renders them hypoexcitable.
Figure 4: An example of the importance of cell background: the selective presence of Nav1.8 channels in DRG neurons, but not sympathetic ganglion neurons, accounts for the opposing actions of Nav1.7 mutant channels on excitability in the two cell types.

Similar content being viewed by others

Change history

  • 25 May 2007

    pub date

References

  1. George, A.L., Jr. Inherited channelopathies associated with epilepsy. Epilepsy Curr. 4, 65–70 (2004).

    Article  Google Scholar 

  2. Cannon, S.C. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu. Rev. Neurosci. 29, 387–415 (2006).

    Article  CAS  Google Scholar 

  3. Hughlings Jackson, J. Selected Writings (ed. Taylor, T.) (Hodder and Stoughton, London, 1931).

    Google Scholar 

  4. Adrian, E.D. The activity of the nerve fibres. Nobel Prize Lecture in Physiology or Medicine, 1922–1941 (Elsevier Publishing, Amsterdam, 1965).

    Google Scholar 

  5. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  6. Escayg, A. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 24, 343–345 (2000).

    Article  CAS  Google Scholar 

  7. Kearney, J.A. et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102, 307–317 (2001).

    Article  CAS  Google Scholar 

  8. Lossin, C. et al. Molecular basis of an inherited epilepsy. Neuron 34, 877–884 (2002).

    Article  CAS  Google Scholar 

  9. Fujiwara, T. et al. Mutations of sodium channel α type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 126, 531–546 (2003).

    Article  Google Scholar 

  10. Kamiya, K. et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J. Neurosci. 24, 2690–2698 (2004).

    Article  CAS  Google Scholar 

  11. Claes, L. et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet. 68, 1327–1332 (2001).

    Article  CAS  Google Scholar 

  12. Lossin, C. et al. Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A. J. Neurosci. 23, 11289–11295 (2003).

    Article  CAS  Google Scholar 

  13. Meisler, M.H. & Kearney, J.A. Sodium channel mutations in epilepsy and other neurological disorders. J. Clin. Invest. 115, 2010–2017 (2005).

    Article  CAS  Google Scholar 

  14. Barela, A.J. et al. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J. Neurosci. 26, 2714–2723 (2006).

    Article  CAS  Google Scholar 

  15. Mulley, J.C. et al. A new molecular mechanism for severe myoclonic epilepsy of infancy: exonic deletions in SCN1A. Neurology 67, 1094–1095 (2006).

    Article  CAS  Google Scholar 

  16. Bergren, S.K. et al. Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channel Scn2a. Mamm. Genome 16, 683–690 (2005).

    Article  CAS  Google Scholar 

  17. Yu, F.H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

    Article  CAS  Google Scholar 

  18. Cummins, T.R. et al. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952–5961 (2001).

    Article  CAS  Google Scholar 

  19. Waxman, S.G. & Dib-Hajj, S.D. Erythermalgia: molecular basis for an inherited pain syndrome. Trends Mol. Med. 11, 555–562 (2005).

    Article  CAS  Google Scholar 

  20. Cummins, T.R., Howe, J.R. & Waxman, S.G. Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J. Neurosci. 18, 9606–9619 (1998).

    Article  Google Scholar 

  21. Toledo-Aral, J.J. et al. Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc. Natl. Acad. Sci. USA 94, 1527–1532 (1997).

    Article  CAS  Google Scholar 

  22. Nassar, M.A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl. Acad. Sci. USA 101, 12706–12711 (2004).

    Article  CAS  Google Scholar 

  23. Cox, J.J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    Article  CAS  Google Scholar 

  24. Dib-Hajj, S.D. et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005).

    Article  CAS  Google Scholar 

  25. Davis, M.D. et al. Erythromelalgia: vasculopathy, neuropathy, or both? A prospective study of vascular and neurophysiologic studies in erythromelalgia. Arch. Dermatol. 139, 1337–1343 (2003).

    Article  Google Scholar 

  26. Mork, C., Kalgaard, O.M. & Kvernebo, K. Impaired neurogenic control of skin perfusion in erythromelalgia. J. Invest. Dermatol. 118, 699–703 (2002).

    Article  CAS  Google Scholar 

  27. Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel α subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004).

    Article  CAS  Google Scholar 

  28. Cummins, T.R., Dib-Hajj, S.D. & Waxman, S.G. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci. 24, 8232–8236 (2004).

    Article  CAS  Google Scholar 

  29. Rush, A.M. et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl. Acad. Sci. USA 103, 8245–8250 (2006).

    Article  CAS  Google Scholar 

  30. Akopian, A.N., Sivilotti, L. & Wood, J.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  Google Scholar 

  31. Sangameswaran, L. et al. Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J. Biol. Chem. 271, 5953–5956 (1996).

    Article  CAS  Google Scholar 

  32. Catterall, W.A., Goldin, A.L. & Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409 (2005).

    Article  CAS  Google Scholar 

  33. Cummins, T.R. & Waxman, S.G. Down-regulation of tetrodotoxin-resistant sodium currents and up-regulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons following nerve injury. J. Neurosci. 17, 3503–3514 (1997).

    Article  CAS  Google Scholar 

  34. Renganathan, M., Cummins, T.R. & Waxman, S.G. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).

    Article  CAS  Google Scholar 

  35. Blair, N.T. & Bean, B.P. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current and Ca2+ current in the action potentials of nociceptive sensory neurons. J. Neurosci. 22, 10277–10290 (2002).

    Article  CAS  Google Scholar 

  36. Spampanato, J. et al. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for β subunit interaction. J. Neurosci. 3, 10022–10034) (2004).

    Article  Google Scholar 

  37. Grieco, T.M., Malhotra, J.D., Chen, C., Isom, L.L. & Raman, I.M. Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45, 233–244 (2005).

    Article  CAS  Google Scholar 

  38. Wittmack, E.K. et al. Fibroblast growth factor homologous factor 2B: association with Nav1.6 and selective colocalization at nodes of Ranvier in dorsal root axons. J. Neurosci. 24, 6765–6775 (2004).

    Article  CAS  Google Scholar 

  39. Djouhri, L. et al. The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J. Physiol. (Lond.) 550, 739–752 (2003).

    Article  CAS  Google Scholar 

  40. Porreca, F. et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc. Natl. Acad. Sci. USA 96, 7640–7644 (1999).

    Article  CAS  Google Scholar 

  41. Djouhri, L. et al. Sensory and electrophysiological properties of guinea-pig sensory neurons expressing Nav1.7 (PN1) Na+ channel α subunit protein. J. Physiol. (Lond.) 546, 565–576 (2003).

    Article  CAS  Google Scholar 

  42. Renganathan, M., Cummins, T.R., Hormuzdiar, W.N. & Waxman, S.G. Alpha-SNS produces the slow TTX-resistant sodium current in large cutaneous afferent DRG neurons. J. Neurophysiol. 84, 710–720 (2000).

    Article  CAS  Google Scholar 

  43. Stys, P.K., Waxman, S.G. & Ransom, B.R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J. Neurosci. 12, 430–439 (1992).

    Article  CAS  Google Scholar 

  44. Black, J.A., Liu, S., Tanaka, M., Cummins, T.R. & Waxman, S.G. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108, 237–247 (2004).

    Article  CAS  Google Scholar 

  45. Black, J.A. et al. Sensory neuron specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc. Natl. Acad. Sci. USA 97, 11598–11602 (2000).

    Article  CAS  Google Scholar 

  46. Dib-Hajj, S.D. et al. Rescue of α-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo. J. Neurophysiol. 79, 2668–2676 (1998).

    Article  CAS  Google Scholar 

  47. De Simone, R., Micera, A., Tirassa, P. & Aloe, L. mRNA for NGF and p75 in the central nervous system of rats affected by experimental allergic encephalomyelitis. Neuropathol. Appl. Neurobiol. 22, 54–59 (1996).

    Article  CAS  Google Scholar 

  48. Damarjian, T.G., Craner, M.J., Black, J.A. & Waxman, S.G. Upregulation and colocalization of p75 and Nav1.8 in Purkinje neurons in experimental autoimmune encephalomyelitis. Neurosci. Lett. 369, 186–190 (2004).

    Article  CAS  Google Scholar 

  49. Renganathan, M., Gelderblom, M., Black, J.A. & Waxman, S.G. Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells. Brain Res. 959, 235–243 (2003).

    Article  CAS  Google Scholar 

  50. Saab, C.Y., Craner, M.J., Kataoka, Y. & Waxman, S.G. Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Exp. Brain Res. 158, 1–8 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waxman, S. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nat Neurosci 10, 405–409 (2007). https://doi.org/10.1038/nn1857

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing