Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential development of high-level visual cortex correlates with category-specific recognition memory

Abstract

High-level visual cortex in humans includes functionally defined regions that preferentially respond to objects, faces and places. It is unknown how these regions develop and whether their development relates to recognition memory. We used functional magnetic resonance imaging to examine the development of several functionally defined regions including object (lateral occipital complex, LOC)-, face ('fusiform face area', FFA; superior temporal sulcus, STS)- and place ('parahippocampal place area', PPA)-selective cortices in children (ages 7–11), adolescents (12–16) and adults. Right FFA and left PPA volumes were substantially larger in adults than in children. This development occurred by expansion of FFA and PPA into surrounding cortex and was correlated with improved recognition memory for faces and places, respectively. In contrast, LOC and STS volumes and object-recognition memory remained constant across ages. Thus, the ventral stream undergoes a prolonged maturation that varies temporally across functional regions, is determined by brain region rather than stimulus category, and is correlated with the development of category-specific recognition memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral data during scan.
Figure 2: Face-selective activations in the fusiform gyrus as a function of age.
Figure 3: BOLD response amplitudes in the FFA and face selectivity.
Figure 4: Face-selective activations in the STS as a function of age.
Figure 5: Object-selective activations in the LOC as a function of age.
Figure 6: Place-selective activations in the PHG as a function of age.
Figure 7: BOLD response amplitudes in the PPA and place selectivity.
Figure 8: Performance of different age groups on an independent recognition-memory test for faces, abstract sculptures and places.

Similar content being viewed by others

References

  1. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tong, F., Nakayama, K., Vaughan, J.T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Golby, A.J., Gabrieli, J.D.E., Chiao, J.Y. & Eberhardt, J.L. Differential responses in the fusiform region to same-race and other-race faces. Nat. Neurosci. 4, 845–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Nichols, E.A., Kao, Y.C., Verfaellie, M. & Gabrieli, J.D. Working memory and long-term memory for faces: evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus 16, 604–616 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ranganath, C., DeGutis, J. & D'Esposito, M. Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Brain Res. Cogn. Brain Res. 20, 37–45 (2004).

    Article  PubMed  Google Scholar 

  8. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Stern, C.E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 8660–8665 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H. & Gabrieli, J.D. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Gauthier, I. What constrains the organization of the ventral temporal cortex? Trends Cogn. Sci. 4, 1–2 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tarr, M.J. & Gauthier, I. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat. Neurosci. 3, 764–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Goren, C.C., Sarty, M. & Wu, P.Y. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975).

    CAS  PubMed  Google Scholar 

  16. Johnson, M.H., Dziurawiec, S., Ellis, H. & Morton, J. Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. de Haan, M. & Nelson, C.A. Brain activity differentiates face and object processing in 6-month-old infants. Dev. Psychol. 35, 1113–1121 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gauthier, I., Tarr, M.J., Anderson, A.W., Skudlarski, P. & Gore, J.C. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Gauthier, I., Skudlarski, P., Gore, J.C. & Anderson, A.W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Chance, J.E., Turner, A.L. & Goldstein, A.G. Development of differential recognition for own- and other-race faces. J. Psychol. 112, 29–37 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Carey, S., Diamond, R. & Woods, B. The development of face recognition- a maturation component? Dev. Psychol. 16, 257–269 (1980).

    Article  Google Scholar 

  22. Jenkins, W.M., Merzenich, M.M. & Recanzone, G. Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia 28, 573–584 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Haslinger, B. et al. Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum. Brain Mapp. 22, 206–215 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tzourio-Mazoyer, N. et al. Neural correlates of woman face processing by 2-month-old infants. Neuroimage 15, 454–461 (2002).

    Article  PubMed  Google Scholar 

  25. Gathers, A.D., Bhatt, R., Corbly, C.R., Farley, A.B. & Joseph, J.E. Developmental shifts in cortical loci for face and object recognition. Neuroreport 15, 1549–1553 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aylward, E.H. et al. Brain activation during face perception: evidence of a developmental change. J. Cogn. Neurosci. 17, 308–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Huettel, S.A., Singerman, J.D. & McCarthy, G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13, 161–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Thomason, M.E., Burrows, B.E., Gabrieli, J.D. & Glover, G.H. Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 25, 824–837 (2005).

    Article  PubMed  Google Scholar 

  29. Weisberg, J., van Turennout, M. & Martin, A. A neural system for learning about object function. Cereb. Cortex, 17, 513–521 (2007).

    Article  PubMed  Google Scholar 

  30. Downing, P.E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kronbichler, M. et al. The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage 21, 946–953 (2004).

    Article  PubMed  Google Scholar 

  32. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Grill-Spector, K., Sayres, R. & Ress, D. High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nat. Neurosci. 9, 1177–1185 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Dalton, K.M. et al. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8, 519–526 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conner, I.P., Sharma, S., Lemieux, S.K. & Mendola, J.D. Retinotopic organization in children measured with fMRI. J. Vis. 4, 509–523 (2004).

    Article  PubMed  Google Scholar 

  37. Yue, X., Tjan, B.S. & Biederman, I. What makes faces special? Vision Res. 46, 3802–3811 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Anastasi, J.S. & Rhodes, M.G. An own-age bias in face recognition for children and older adults. Psychon. Bull. Rev. 12, 1043–1047 (2005).

    Article  PubMed  Google Scholar 

  39. Gilbert, C. & Bakan, P. Visual asymmetry in perception of faces. Neuropsychologia 11, 355–362 (1973).

    Article  CAS  PubMed  Google Scholar 

  40. De Renzi, E., Perani, D., Carlesimo, G.A., Silveri, M.C. & Fazio, F. Prosopagnosia can be associated with damage confined to the right hemisphere–an MRI and PET study and a review of the literature. Neuropsychologia 32, 893–902 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Rossion, B. et al. Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J. Cogn. Neurosci. 12, 793–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Epstein, R.A., Higgins, J.S., Parker, W., Aguirre, G.K. & Cooperman, S. Cortical correlates of face and scene inversion: a comparison. Neuropsychologia 44, 1145–1158 (2006).

    Article  PubMed  Google Scholar 

  44. Yovel, G. & Kanwisher, N. Face perception: domain specific, not process specific. Neuron 44, 889–898 (2004).

    CAS  PubMed  Google Scholar 

  45. Grill-Spector, K. et al. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6, 316–328 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M. & Malach, R. A hierarchical axis of object processing stages in the human visual cortex. Cereb. Cortex 11, 287–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 13, 159–166 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Glover, G.H. & Law, C.S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Duvernoy, H. The Human Brain (Springer, Wien and New York, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to A. Greenwood, G. Glover, P. Mazaika, C. Rorden and B. Wandel for useful suggestions, to S. Dean and L. Wood for help with scanning and behavioral tests, and to the participants in our experiments. This work was supported by US National Institutes of Health grants 5R21DA15893, 1R21MH66747, 1R21EY017741, T32 MH19908 and National Science Foundation grant BCS-0617688.

Author information

Authors and Affiliations

Authors

Contributions

G.G., D.G.G., J.D.E.G. and K.G.-S. participated in all phases of this study. G.G. participated in designing the experiments, conducting fMRI and behavioral experiments, analyzing the data and preparing the manuscript. D.G.G. developed code for fMRI experiments and data analyses, helped with data collection and analysis and contributed to the manuscript. S.W.-G. contributed to code and data analyses. J.L.E. and A.R. contributed to the study design and the manuscript. K.G.-S. and J.D.E.G. supervised the study and contributed to experimental design, data collection and analysis, and the manuscript.

Corresponding author

Correspondence to Golijeh Golarai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Analysis of shape-preserved ROIs. (PDF 107 kb)

Supplementary Table 1

Between-group comparison of noise-related measures, including total motion during the scan, BOLD-fluctuations during baseline (%cv-BOLD) and goodness of GLM fit (%Res) within the anatomical boundaries of the right (R_mGF) and left (L_mGF) midfusiform gyrus. (PDF 81 kb)

Supplementary Table 2

Analysis of BOLD-related noise (%cv_BOLD) and goodness of GLM fit (%Res) within the anatomical boundaries of the right (R_PHG) and left (L_PHG) parahippocampal gyrus. (PDF 85 kb)

Supplementary Note 1

Analysis of BOLD-related confounds across age groups. (PDF 100 kb)

Supplementary Note 2

Recognition memory for faces, objects and places. (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golarai, G., Ghahremani, D., Whitfield-Gabrieli, S. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10, 512–522 (2007). https://doi.org/10.1038/nn1865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing