Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex

A Corrigendum to this article was published on 01 August 2007

This article has been updated

Abstract

The balance between excitation and inhibition in the cortex is crucial in determining sensory processing. Because the amount of excitation varies, maintaining this balance is a dynamic process; yet the underlying mechanisms are poorly understood. We show here that the activity of even a single layer 2/3 pyramidal cell in the somatosensory cortex of the rat generates widespread inhibition that increases disproportionately with the number of active pyramidal neurons. This supralinear increase of inhibition results from the incremental recruitment of somatostatin-expressing inhibitory interneurons located in layers 2/3 and 5. The recruitment of these interneurons increases tenfold when they are excited by two pyramidal cells. A simple model demonstrates that the distribution of excitatory input amplitudes onto inhibitory neurons influences the sensitivity and dynamic range of the recurrent circuit. These data show that through a highly sensitive recurrent inhibitory circuit, cortical excitability can be modulated by one pyramidal cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unitary recurrent inhibitory circuits.
Figure 2: Supralinear increase of inhibition.
Figure 3: Intra- and translaminar recurrent inhibitory circuits.
Figure 4: Spike timing of somatostatin-positive interneurons determines the time course of recurrent inhibition.
Figure 5: Increase in the recruitment of somatostatin-expressing interneurons.
Figure 6: Model describing range and sensitivity of recurrent inhibition.

Similar content being viewed by others

Change history

  • 11 July 2007

    added a reference

Notes

  1. *NOTE: In the version of this article initially published, the authors neglected to cite a related paper that was published during the review process. At the end of the Introduction, the following sentences should have been included: “During the revision of this manuscript, another group reported the presence of a recurrent inhibitory circuit with similar properties to the one described here in layer 5 of the somatosensory cortex42. Together, these findings suggest common principles of operation of elementary circuits across cortical layers.” In the reference list, the following reference should have been included: “42. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735-746 (2007).” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Ferster, D. & Jagadeesh, B. EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262–1274 (1992).

    Article  CAS  Google Scholar 

  2. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  Google Scholar 

  3. Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    Article  CAS  Google Scholar 

  4. Wilent, W.B. & Contreras, D. Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity. J. Neurosci. 24, 3985–3998 (2004).

    Article  CAS  Google Scholar 

  5. Douglas, R.J., Martin, K.A. & Whitteridge, D. An intracellular analysis of the visual responses of neurones in cat visual cortex. J. Physiol. (Lond.) 440, 659–696 (1991).

    Article  CAS  Google Scholar 

  6. Anderson, J.S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).

    Article  CAS  Google Scholar 

  7. Wilent, W.B. & Contreras, D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat. Neurosci. 8, 1364–1370 (2005).

    Article  CAS  Google Scholar 

  8. Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    Article  CAS  Google Scholar 

  9. Dykes, R.W., Landry, P., Metherate, R. & Hicks, T.P. Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons. J. Neurophysiol. 52, 1066–1093 (1984).

    Article  CAS  Google Scholar 

  10. Kyriazi, H.T., Carvell, G.E., Brumberg, J.C. & Simons, D.J. Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. J. Neurophysiol. 75, 547–560 (1996).

    Article  CAS  Google Scholar 

  11. Sillito, A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  12. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717–723 (2004).

    Article  CAS  Google Scholar 

  13. Shu, Y., Hasenstaub, A. & McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    Article  CAS  Google Scholar 

  14. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  15. Douglas, R.J. & Martin, K.A. A functional microcircuit for cat visual cortex. J. Physiol. (Lond.) 440, 735–769 (1991).

    Article  CAS  Google Scholar 

  16. Pinto, D.J., Hartings, J.A., Brumberg, J.C. & Simons, D.J. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb. Cortex 13, 33–44 (2003).

    Article  Google Scholar 

  17. Pinto, D.J., Brumberg, J.C. & Simons, D.J. Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophysiol. 83, 1158–1166 (2000).

    Article  CAS  Google Scholar 

  18. Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. (Lond.) 553, 243–265 (2003).

    Article  CAS  Google Scholar 

  19. Kozloski, J., Hamzei-Sichani, F. & Yuste, R. Stereotyped position of local synaptic targets in neocortex. Science 293, 868–872 (2001).

    Article  CAS  Google Scholar 

  20. Thomson, A.M. & Deuchars, J. Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb. Cortex 7, 510–522 (1997).

    Article  CAS  Google Scholar 

  21. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  Google Scholar 

  22. Galarreta, M., Erdelyi, F., Szabo, G. & Hestrin, S. Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J. Neurosci. 24, 9770–9778 (2004).

    Article  CAS  Google Scholar 

  23. Blatow, M. et al. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38, 805–817 (2003).

    Article  CAS  Google Scholar 

  24. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  Google Scholar 

  25. McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  26. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  Google Scholar 

  27. Beierlein, M., Gibson, J.R. & Connors, B.W. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J. Neurophysiol. 90, 2987–3000 (2003).

    Article  Google Scholar 

  28. Gibson, J.R., Beierlein, M. & Connors, B.W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  Google Scholar 

  29. Galarreta, M. & Hestrin, S. Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat. Neurosci. 1, 587–594 (1998).

    Article  CAS  Google Scholar 

  30. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. (Lond.) 561, 65–90 (2004).

    Article  CAS  Google Scholar 

  31. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  32. Svoboda, K., Helmchen, F., Denk, W. & Tank, D.W. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat. Neurosci. 2, 65–73 (1999).

    Article  CAS  Google Scholar 

  33. Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    Article  CAS  Google Scholar 

  34. Chu, Z., Galarreta, M. & Hestrin, S. Synaptic interactions of late-spiking neocortical neurons in layer 1. J. Neurosci. 23, 96–102 (2003).

    Article  CAS  Google Scholar 

  35. Yoshimura, Y. & Callaway, E.M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    Article  CAS  Google Scholar 

  36. Rozov, A., Jerecic, J., Sakmann, B. & Burnashev, N. AMPA receptor channels with long-lasting desensitization in bipolar interneurons contribute to synaptic depression in a novel feedback circuit in layer 2/3 of rat neocortex. J. Neurosci. 21, 8062–8071 (2001).

    Article  CAS  Google Scholar 

  37. Thomson, A.M., West, D.C., Wang, Y. & Bannister, A.P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953 (2002).

    Article  Google Scholar 

  38. Ma, Y., Hu, H., Berrebi, A.S., Mathers, P.H. & Agmon, A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).

    Article  CAS  Google Scholar 

  39. Fairén, A., DeFelipe, J. & Regidor, J. Nonpyramidal neurons: general account. in Cellular Components of the Cerebral Cortex (eds. Peters, A. & Jones, E.G.) 201–254 (Plenum, New York, 1984).

    Google Scholar 

  40. Azouz, R. & Gray, C.M. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 97, 8110–8115 (2000).

    Article  CAS  Google Scholar 

  41. Biro, A.A., Holderith, N.B. & Nusser, Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J. Neurosci. 25, 223–232 (2005).

    Article  CAS  Google Scholar 

  42. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to F. Pouille for contributing to some of the experiments included in this study. We thank J. Isaacson, E. Flister and the members of the Scanziani lab for comments on the manuscript and their continuous support. This work was funded by the US National Institutes of Health (MH71401 and MH70058). L.L.G. was supported by a predoctoral National Research Service Award grant (1-F31NS056529-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Scanziani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Monosynaptic excitation between layer 2/3 pyramidal cells. (PDF 132 kb)

Supplementary Fig. 2

Model for SOM interneuron activation with three action potentials. (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapfer, C., Glickfeld, L., Atallah, B. et al. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat Neurosci 10, 743–753 (2007). https://doi.org/10.1038/nn1909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing