Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UNC-46 is required for trafficking of the vesicular GABA transporter

Abstract

Mutations in unc-46 in Caenorhabditis elegans cause defects in all behaviors that are mediated by GABA. Here we show that UNC-46 is a sorting factor that localizes the vesicular GABA transporter to synaptic vesicles. The UNC-46 protein is related to the LAMP (lysosomal associated membrane protein) family of proteins and is localized at synapses. In unc-46 mutants, the vesicular transporter is not found specifically in synaptic vesicles but rather is diffusely spread along the axon. Mislocalization of the transporter severely reduces the frequency of miniature currents, but the remaining currents are normal in amplitude. Because the number of synaptic vesicles is not depleted, it is likely that only a fraction of vesicles harbor the transporter in unc-46 mutants. Our data indicate that the transporter and UNC-46 have mutual roles in sorting. The vesicular GABA transporter recruits UNC-46 to synaptic vesicle precursors in the cell body, and UNC-46 sorts the transporter at the cell body and during endocytosis at the synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UNC-46 phylogenetic tree and predicted secondary structure.
Figure 2: The unc-46 gene is expressed in GABA neurons and is not required for neuron development.
Figure 3: UNC-46 is localized at synapses.
Figure 4: Localization of VGAT in unc-46 and unc-25 mutants.
Figure 5: Ultrastructural analysis of unc-46 mutants.
Figure 6: Electrophysiological analysis of unc-46 mutants.
Figure 7: Locomotion of unc-46 mutants is rescued by overexpression of VGAT.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Liu, Y. et al. Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells. J. Cell Biol. 127, 1419–1433 (1994).

    Article  CAS  Google Scholar 

  2. Liu, Y. & Edwards, R.H. Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J. Cell Biol. 139, 907–916 (1997).

    Article  CAS  Google Scholar 

  3. Krantz, D.E. et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J. Cell Biol. 149, 379–396 (2000).

    Article  CAS  Google Scholar 

  4. Barbosa, J., Jr . et al. Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex. J. Neurochem. 82, 1221–1228 (2002).

    Article  CAS  Google Scholar 

  5. Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).

    Article  CAS  Google Scholar 

  6. De Gois, S. et al. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell. Mol. Neurobiol. 26, 679–693 (2006).

    Article  CAS  Google Scholar 

  7. Vinatier, J. et al. Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. J. Neurochem. 97, 1111–1125 (2006).

    Article  CAS  Google Scholar 

  8. Schuske, K., Beg, A.A. & Jorgensen, E.M. The GABA nervous system in C. elegans. Trends Neurosci. 27, 407–414 (2004).

    Article  CAS  Google Scholar 

  9. Jin, Y., Hoskins, R. & Horvitz, H.R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–783 (1994).

    Article  CAS  Google Scholar 

  10. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 19, 539–548 (1999).

    Article  CAS  Google Scholar 

  11. McIntire, S.L., Reimer, R.J., Schuske, K., Edwards, R.H. & Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997).

    Article  CAS  Google Scholar 

  12. Bamber, B.A., Beg, A.A., Twyman, R.E. & Jorgensen, E.M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).

    Article  CAS  Google Scholar 

  13. McIntire, S.L., Jorgensen, E. & Horvitz, H.R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337 (1993).

    Article  CAS  Google Scholar 

  14. Eskelinen, E.L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).

    Article  CAS  Google Scholar 

  15. Kostich, M., Fire, A. & Fambrough, D.M. Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J. Cell Sci. 113, 2595–2606 (2000).

    CAS  PubMed  Google Scholar 

  16. David, A. et al. BAD-LAMP defines a subset of early endocytic organelles in subpopulations of cortical projection neurons. J. Cell Sci. 120, 353–365 (2007).

    Article  CAS  Google Scholar 

  17. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  Google Scholar 

  18. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  Google Scholar 

  19. Shan, G., Kim, K., Li, C. & Walthall, W.W. Convergent genetic programs regulate similarities and differences between related motor neuron classes in Caenorhabditis elegans. Dev. Biol. 280, 494–503 (2005).

    Article  CAS  Google Scholar 

  20. Eastman, C., Horvitz, H.R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).

    Article  CAS  Google Scholar 

  21. Nonet, M.L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).

    Article  CAS  Google Scholar 

  22. Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  CAS  Google Scholar 

  23. Fremeau, R.T., Jr. et al. Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304, 1815–1819 (2004).

    Article  CAS  Google Scholar 

  24. Richmond, J.E. & Jorgensen, E.M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797 (1999).

    Article  CAS  Google Scholar 

  25. Marsh, M. et al. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J. Cell Biol. 104, 875–886 (1987).

    Article  CAS  Google Scholar 

  26. Eskelinen, E.L. et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol. Biol. Cell 15, 3132–3145 (2004).

    Article  CAS  Google Scholar 

  27. Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 27, 495–502 (2006).

    Article  CAS  Google Scholar 

  28. Eskelinen, E.L. et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol. Biol. Cell 13, 3355–3368 (2002).

    Article  CAS  Google Scholar 

  29. Fukuda, M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J. Biol. Chem. 266, 21327–21330 (1991).

    CAS  PubMed  Google Scholar 

  30. Daniels, R.W. et al. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49, 11–16 (2006).

    Article  CAS  Google Scholar 

  31. Harris, T.W., Hartwieg, E., Horvitz, H.R. & Jorgensen, E.M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150, 589–600 (2000).

    Article  CAS  Google Scholar 

  32. Nonet, M.L. et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).

    Article  CAS  Google Scholar 

  33. Schuske, K.R. et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762 (2003).

    Article  CAS  Google Scholar 

  34. Clark, S.G., Lu, X. & Horvitz, H.R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Richmond, J.E., Davis, W.S. & Jorgensen, E.M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

    Article  CAS  Google Scholar 

  36. Weimer, R.M. et al. UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26, 8040–8047 (2006).

    Article  CAS  Google Scholar 

  37. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.I. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by qualitiy analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. White for use of his worm tracking system, M. Gu for the GFP-tagged synaptotagmin strain, the C. elegans Genome Center for strains, the Sanger Center for cosmids, Y. Kohara for the unc-46 cDNA, J. Shine for unc-46 mapping data, J. Thomas for the Brugia gene prediction, and D. Joshi and J. Huang for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.T.P. performed the electrophysiology experiments, S.W. performed the electron microscopy experiments and K.S. performed all other experiments and wrote the paper with E.M.J. and with help from M.T.P.

Corresponding author

Correspondence to Erik M Jorgensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

unc-46 cloning. (PDF 136 kb)

Supplementary Fig. 2

UNC-46 homolog alignment. (PDF 334 kb)

Supplementary Fig. 3

GABA nervous system structure is normal in unc-46 mutants. (PDF 167 kb)

Supplementary Fig. 4

Model for UNC-46 protein function. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuske, K., Palfreyman, M., Watanabe, S. et al. UNC-46 is required for trafficking of the vesicular GABA transporter. Nat Neurosci 10, 846–853 (2007). https://doi.org/10.1038/nn1920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing