Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Genetically encoding unnatural amino acids for cellular and neuronal studies

Abstract

Proteins participate in various biological processes and can be harnessed to probe and control biological events selectively and reproducibly, but the genetic code limits the building block to 20 common amino acids for protein manipulation in living cells. The genetic encoding of unnatural amino acids will remove this restriction and enable new chemical and physical properties to be precisely introduced into proteins. Here we present new strategies for generating orthogonal tRNA-synthetase pairs, which made possible the genetic encoding of diverse unnatural amino acids in different mammalian cells and primary neurons. Using this new methodology, we incorporated unnatural amino acids with extended side chains into the K+ channel Kv1.4, and found that the bulkiness of residues in the inactivation peptide is essential for fast channel inactivation, a finding that had not been possible using conventional mutagenesis. This technique will stimulate and facilitate new molecular studies using tailored unnatural amino acids for cell biology and neurobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficient expression of bacterial tRNA in mammalian cells using the H1 promoter.
Figure 2: Unnatural-amino-acid-specific synthetases evolved in yeast are functional in mammalian cells.
Figure 3: Genetically encoding unnatural amino acids in neurons.
Figure 4: A model for the N-type inactivation of Kv channels.
Figure 5: Probing N-type inactivation using unnatural amino acid mutagenesis with Kv1.4 channels expressed in mammalian cells.
Figure 6: Diameter of the inactivation peptide affects channel inactivation owing to the size restriction of the side portal.

Similar content being viewed by others

References

  1. Callaway, E.M. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28, 196–201 (2005).

    Article  CAS  Google Scholar 

  2. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  Google Scholar 

  3. Gandhi, C.S. & Isacoff, E.Y. Shedding light on membrane proteins. Trends Neurosci. 28, 472–479 (2005).

    Article  CAS  Google Scholar 

  4. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  5. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  Google Scholar 

  6. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  7. Wang, L. & Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Edn. Engl. 44, 34–66 (2004).

    Article  Google Scholar 

  8. Nowak, M.W. et al. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 268, 439–442 (1995).

    Article  CAS  Google Scholar 

  9. Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  Google Scholar 

  10. Lummis, S.C., Beene, D.L., Harrison, N.J., Lester, H.A. & Dougherty, D.A. A cation-pi binding interaction with a tyrosine in the binding site of the GABAC receptor. Chem. Biol. 12, 993–997 (2005).

    Article  CAS  Google Scholar 

  11. Beene, D.L., Price, K.L., Lester, H.A., Dougherty, D.A. & Lummis, S.C. Tyrosine residues that control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid mutagenesis. J. Neurosci. 24, 9097–9104 (2004).

    Article  CAS  Google Scholar 

  12. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  13. Johnston, D. et al. Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. (Lond.) 525, 75–81 (2000).

    Article  CAS  Google Scholar 

  14. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  15. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  Google Scholar 

  16. Demo, S.D. & Yellen, G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7, 743–753 (1991).

    Article  CAS  Google Scholar 

  17. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  Google Scholar 

  18. Wang, L., Magliery, T.J., Liu, D.R. & Schultz, P.G. A new functional suppressor tRNA/aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. J. Am. Chem. Soc. 122, 5010–5011 (2000).

    Article  CAS  Google Scholar 

  19. Wang, L. & Schultz, P.G. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8, 883–890 (2001).

    Article  CAS  Google Scholar 

  20. Galli, G., Hofstetter, H. & Birnstiel, M.L. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294, 626–631 (1981).

    Article  CAS  Google Scholar 

  21. Myslinski, E., Ame, J.C., Krol, A. & Carbon, P. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res. 29, 2502–2509 (2001).

    Article  CAS  Google Scholar 

  22. Edwards, H. & Schimmel, P. A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Mol. Cell. Biol. 10, 1633–1641 (1990).

    Article  CAS  Google Scholar 

  23. Doctor, B.P. & Mudd, J.A. Species specificity of amino acid accepter ribonucleic acid and aminoacyl soluble ribonucleic acid synthetases. J. Biol. Chem. 238, 3677–3681 (1963).

    CAS  PubMed  Google Scholar 

  24. Drabkin, H.J., Park, H.J. & Rajbhandary, U.L. Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene. Mol. Cell. Biol. 16, 907–913 (1996).

    Article  CAS  Google Scholar 

  25. Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    Article  CAS  Google Scholar 

  26. Murrell-Lagnado, R.D. & Aldrich, R.W. Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J. Gen. Physiol. 102, 949–975 (1993).

    Article  CAS  Google Scholar 

  27. Kondoh, S., Ishii, K., Nakamura, Y. & Taira, N. A mammalian transient type K+ channel, rat Kv1.4, has two potential domains that could produce rapid inactivation. J. Biol. Chem. 272, 19333–19338 (1997).

    Article  CAS  Google Scholar 

  28. Antz, C. et al. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385, 272–275 (1997).

    Article  CAS  Google Scholar 

  29. Wissmann, R. et al. Solution structure and function of the “tandem inactivation domain” of the neuronal A-type potassium channel Kv1.4. J. Biol. Chem. 278, 16142–16150 (2003).

    Article  CAS  Google Scholar 

  30. Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res. 30, 4692–4699 (2002).

    Article  CAS  Google Scholar 

  31. Paule, M.R. & White, R.J. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298 (2000).

    Article  CAS  Google Scholar 

  32. Murphy, S., Di Liegro, C. & Melli, M. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 51, 81–87 (1987).

    Article  CAS  Google Scholar 

  33. Yuan, Y. & Reddy, R. 5′ flanking sequences of human MRP/7–2 RNA gene are required and sufficient for the transcription by RNA polymerase III. Biochim. Biophys. Acta 1089, 33–39 (1991).

    Article  CAS  Google Scholar 

  34. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  Google Scholar 

  35. Cornish, V.W., Mendel, D. & Schultz, P.G. Probing protein structure and function with an expanded genetic code. Angew. Chem. Int. Edn. Engl. 34, 621–633 (1995).

    Article  CAS  Google Scholar 

  36. Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  37. Zufferey, R., Donello, J.E., Trono, D. & Hope, T.J. Woodchuck hepatitis virus post-transcriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.R. Martin and R.Y. Tsien for plasmid pCLHF, E. Cooper for Kv1.4 cDNA, and D. Summerer and P.G. Schultz for plasmid pLeuRSB8T252A before publication. We thank A.R. Parrish, K. Adams, J. Xu, F.D. Winter, R. Nassirpour, Z. Chen for technical support, and P. Aryal for helpful discussions. P.A. Slesinger acknowledges grant support from US National Institutes of Health. L. Wang acknowledges the support of the Searle Scholar Program and the Beckman Young Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

W.W. conducted experiments for tRNA expression, encoding unnatural amino acids in neurons and probing channel inactivation, and analyzed the data. J.K.T. conducted experiments for encoding unnatural amino acids in other mammalian cells, made constructs for neuronal work, and analyzed the data. G.V.L. conducted the simulation of the inactivation peptide. T.J.B. synthesized DanAla. J.P.N. provided support for computer simulation and chemical synthesis. K.L. provided support for neuronal work. P.A.S. provided support and guidance for the electrophysiology experiments, analyzed the data, and revised the manuscript. L.W. conceived and designed the experiments for unnatural amino acid incorporation and ion channel inactivation, analyzed the data, wrote the manuscript, and supervised the project.

Corresponding authors

Correspondence to Paul A Slesinger or Lei Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Takimoto, J., Louie, G. et al. Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 10, 1063–1072 (2007). https://doi.org/10.1038/nn1932

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing