Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue

Abstract

During brain development, neural precursor cells migrate along radial glial fibers to populate the neocortex. RNA interference (RNAi) of the lissencephaly gene LIS1 (also known as PAFAH1b1) inhibits somal movement but not process extension of neural precursors in live brain slices. Here we report imaging of the subcellular events accompanying neural precursor migration and the effects of LIS1, cytoplasmic dynein and myosin II inhibition. Centrosomes move continuously and often far in advance of nuclei, which show extreme saltatory behavior. LIS1 and dynein RNAi inhibit centrosomal and nuclear movement independently, whereas myosin II inhibition blocks only nuclear translocation. Imaging of the microtubule end-binding protein 3 (EB3) reveals a centrosome-centered array of microtubules in live neural precursors under all conditions examined. Dynein is concentrated both at a swelling in the leading process reported to initiate each migratory cycle and in the soma. Thus, dynein pulls on the microtubule network from the swelling. The nucleus is transported along the trailing microtubules by dynein assisted by myosin II.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-lapse fluorescence microscopy of triple-labeled neural precursor cells in live brain slices.
Figure 2: Inhibition of LIS1 and dynein function in migrating neural precursor cells.
Figure 3: Analysis of centrosome movement (a,b) Centrosomal movement in control cells and cells treated with drugs or subjected to RNAi.
Figure 4: Nuclear movement in cells treated with drugs, subjected to RNAi or expressing dominant-negative cDNA constructs.
Figure 5: Inhibition of myosin II expression or function in migrating neural precursor cells.
Figure 6: Microtubule orientation in migrating neural precursor cells in brain slices.
Figure 7: Localization of cytoplasmic dynein during the migratory cycle.

Similar content being viewed by others

References

  1. Feng, Y. & Walsh, C.A. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat. Rev. Neurosci. 2, 408–416 (2001).

    Article  CAS  Google Scholar 

  2. Kato, M. & Dobyns, W.B. Lissencephaly and the molecular basis of neuronal migration. Hum. Mol. Genet. 12, R89–R96 (2003).

    Article  CAS  Google Scholar 

  3. Hatten, M.E. New directions in neuronal migration. Science 297, 1660–1663 (2002).

    Article  CAS  Google Scholar 

  4. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  5. Firtel, R.A. & Meili, R. Dictyostelium: a model for regulated cell movement during morphogenesis. Curr. Opin. Genet. Dev. 10, 421–427 (2000).

    Article  CAS  Google Scholar 

  6. Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O. & Pearlman, A.L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).

    Article  CAS  Google Scholar 

  7. Tsai, J.W., Chen, Y., Kriegstein, A.R. & Vallee, R.B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  Google Scholar 

  8. Solecki, D.J., Model, L., Gaetz, J., Kapoor, T.M. & Hatten, M.E. Par6α signaling controls glial-guided neuronal migration. Nat. Neurosci. 7, 1195–1203 (2004).

    Article  CAS  Google Scholar 

  9. Bellion, A., Baudoin, J.P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    Article  CAS  Google Scholar 

  10. Schaar, B.T. & McConnell, S.K. Cytoskeletal coordination during neuronal migration. Proc. Natl. Acad. Sci. USA 102, 13652–13657 (2005).

    Article  CAS  Google Scholar 

  11. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  12. Gambello, M.J. et al. Multiple dose-dependent effects of Lis1 on cerebral cortical development. J. Neurosci. 23, 1719–1729 (2003).

    Article  CAS  Google Scholar 

  13. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  Google Scholar 

  14. McManus, M.F., Nasrallah, I.M., Pancoast, M.M., Wynshaw-Boris, A. & Golden, J.A. Lis1 is necessary for normal non-radial migration of inhibitory interneurons. Am. J. Pathol. 165, 775–784 (2004).

    Article  CAS  Google Scholar 

  15. Dujardin, D.L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).

    Article  CAS  Google Scholar 

  16. Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001).

    Article  CAS  Google Scholar 

  17. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    Article  CAS  Google Scholar 

  18. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  Google Scholar 

  19. Tai, C.Y., Dujardin, D.L., Faulkner, N.E. & Vallee, R.B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156, 959–968 (2002).

    Article  CAS  Google Scholar 

  20. Ryu, J. et al. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49, 175–182 (2006).

    Article  CAS  Google Scholar 

  21. Kawamoto, S. & Adelstein, R.S. Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides. J. Cell Biol. 112, 915–924 (1991).

    Article  CAS  Google Scholar 

  22. Rakic, P., Knyihar-Csillik, E. & Csillik, B. Polarity of microtubule assemblies during neuronal cell migration. Proc. Natl. Acad. Sci. USA 93, 9218–9222 (1996).

    Article  CAS  Google Scholar 

  23. Stepanova, T. et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3–green fluorescent protein). J. Neurosci. 23, 2655–2664 (2003).

    Article  CAS  Google Scholar 

  24. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  Google Scholar 

  25. Abal, M. et al. Microtubule release from the centrosome in migrating cells. J. Cell Biol. 159, 731–737 (2002).

    Article  CAS  Google Scholar 

  26. Rivas, R.J. & Hatten, M.E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).

    Article  CAS  Google Scholar 

  27. Smith, D.S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775 (2000).

    Article  CAS  Google Scholar 

  28. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  Google Scholar 

  29. Fuchs, J.L. & Schwark, H.D. Neuronal primary cilia: a review. Cell Biol. Int. 28, 111–118 (2004).

    Article  CAS  Google Scholar 

  30. Jacobs, J.R. & Stevens, J.K. Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of PC12 cells: a serial electron microscopic study of the development and control of neurite shape. J. Cell Biol. 103, 895–906 (1986).

    Article  CAS  Google Scholar 

  31. Xie, Z. & Tsai, L.H. Cdk5 phosphorylation of FAK regulates centrosome-associated miocrotubules and neuronal migration. Cell Cycle 3, 108–110 (2004).

    Article  CAS  Google Scholar 

  32. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  33. Paschal, B.M. et al. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  Google Scholar 

  34. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    Article  CAS  Google Scholar 

  35. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    Article  CAS  Google Scholar 

  36. Morris, R. A rough guide to a smooth brain. Nat. Cell Biol. 2, E201–E202 (2000).

    Article  CAS  Google Scholar 

  37. White, R.A., Pan, Z. & Salisbury, J.L. GFP-centrin as a marker for centriole dynamics in living cells. Microsc. Res. Tech. 49, 451–457 (2000).

    Article  CAS  Google Scholar 

  38. Contreras, A. et al. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 23, 8626–8636 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Canoll for comments and suggestions. This work was supported by grants from the US National Institutes of Health (HD40182 and GM47434 to R.B.V.) and by the March of Dimes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B Vallee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, JW., Bremner, K. & Vallee, R. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10, 970–979 (2007). https://doi.org/10.1038/nn1934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing