Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A functional role for EGFR signaling in myelination and remyelination

Abstract

Cellular strategies for oligodendrocyte regeneration and remyelination involve characterizing endogenous neural progenitors that are capable of generating oligodendrocytes during normal development and after demyelination, and identifying the molecular signals that enhance oligodendrogenesis from these progenitors. Using both gain- and loss-of-function approaches, we explored the role of epidermal growth factor receptor (EGFR) signaling in adult myelin repair and in oligodendrogenesis. We show that 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) promoter–driven overexpression of human EGFR (hEGFR) accelerated remyelination and functional recovery following focal demyelination of mouse corpus callosum. Lesion repopulation by Cspg4+ (also known as NG2) Ascl1+ (also known as Mash1) Olig2+ progenitors and functional remyelination were accelerated in CNP-hEGFR mice compared with wild-type mice. EGFR overexpression in subventricular zone (SVZ) and corpus callosum during early postnatal development also expanded this NG2+Mash1+Olig2+ progenitor population and promoted SVZ-to-lesion migration, enhancing oligodendrocyte generation and axonal myelination. Analysis of hypomorphic EGFR-mutant mice confirmed that EGFR signaling regulates oligodendrogenesis and remyelination by NG2+Mash1+Olig2+ progenitors. EGFR targeting holds promise for enhancing oligodendrocyte regeneration and myelin repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFR overexpression enhances NG2+Olig2+Mash1+ progenitor cell proliferation in corpus callosum after focal demyelination.
Figure 2: EGFR overexpression enhances oligodendrogenesis and remyelination after focal demyelination.
Figure 3: EGFR overexpression enhances axonal remyelination after focal demyelination.
Figure 4: Reduced EGFR signaling impairs proliferation of NG2+Olig2+Mash1+ progenitor cells and corpus callosum remyelination after focal demyelination.
Figure 5: EGFR overexpression enhances oligodendrogenesis and myelination during development.
Figure 6: Reduced EGFR signaling decreases the number of NG2+Mash1+Olig2+ progenitors and oligodendrocytes in the corpus callosum.
Figure 7: EGFR overexpression enhances NG2+ cell proliferation and expands the NG2+Mash1+Olig2+ progenitor population in the postnatal SVZ.
Figure 8: EGFR overexpression enhances NG2+Olig2+Mash1+ progenitor cell recruitment to the demyelinated lesion.

Similar content being viewed by others

References

  1. Levine, J.M., Reynolds, R. & Fawcett, J.W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    Article  CAS  Google Scholar 

  2. Stangel, M. & Hartung, H.P. Remyelinating strategies for the treatment of multiple sclerosis. Prog. Neurobiol. 68, 361–376 (2002).

    Article  CAS  Google Scholar 

  3. Coskun, V. & Luskin, M.B. Intrinsic and extrinsic regulation of the proliferation and differentiation of cells in the rodent rostral migratory stream. J. Neurosci. Res. 69, 795–802 (2002).

    Article  CAS  Google Scholar 

  4. Suzuki, S.O. & Goldman, J.E. Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J. Neurosci. 24, 4240–4250 (2003).

    Article  Google Scholar 

  5. Aguirre, A. & Gallo, V. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J. Neurosci. 24, 10530–10541 (2004).

    Article  CAS  Google Scholar 

  6. Aguirre, A.A., Chittajallu, R., Belachew, S. & Gallo, V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol. 165, 575–589 (2004).

    Article  CAS  Google Scholar 

  7. Moreau-Fauvarque, C. et al. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J. Neurosci. 23, 9229–9239 (2003).

    Article  CAS  Google Scholar 

  8. Arnett, H.A. et al. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306, 2111–2115 (2004).

    Article  CAS  Google Scholar 

  9. Xin, M. et al. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354–1365 (2005).

    Article  CAS  Google Scholar 

  10. Cassiani-Ingoni, R. et al. Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation. Exp. Neurol. 201, 349–358 (2006).

    Article  CAS  Google Scholar 

  11. Chang, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B.D. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20, 6404–6412 (2000).

    Article  CAS  Google Scholar 

  12. Reynolds, R. et al. The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J. Neurocytol. 31, 523–536 (2002).

    Article  Google Scholar 

  13. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  Google Scholar 

  14. Martens, D.J., Seaberg, R.M. & van der Kooy, D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur. J. Neurosci. 16, 1045–1057 (2002).

    Article  Google Scholar 

  15. Kornblum, H.I., Yanni, D.S., Easterday, M.C. & Seroogy, K.B. Expression of the EGF receptor family members ErbB2, ErbB3 and ErbB4 in germinal zones of the developing brain and in neurosphere cultures containing CNS stem cells. Dev. Neurosci. 22, 16–24 (2000).

    Article  CAS  Google Scholar 

  16. Anton, E.S. et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat. Neurosci. 7, 1319–1328 (2004).

    Article  CAS  Google Scholar 

  17. Marshall, C.A., Suzuki, S.O. & Goldman, J.E. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43, 52–61 (2003).

    Article  Google Scholar 

  18. Aguirre, A., Rizvi, T.A., Ratner, N. & Gallo, V. Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J. Neurosci. 25, 11092–11106 (2005).

    Article  CAS  Google Scholar 

  19. Ling, B.C. et al. Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell 7, 65–75 (2005).

    Article  CAS  Google Scholar 

  20. Shields, S.A., Gilson, J.M., Blakemore, W.F. & Franklin, R.J. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28, 77–83 (1999).

    Article  CAS  Google Scholar 

  21. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C.M. & Fehlings, M.G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J. Neurosci. 26, 3377–3389 (2006).

    Article  CAS  Google Scholar 

  22. Preston, R.J., Waxman, S.G. & Kocsis, J.D. Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum. Exp. Neurol. 79, 808–820 (1983).

    Article  CAS  Google Scholar 

  23. Luetteke, N.C. et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 8, 399–413 (1994).

    Article  CAS  Google Scholar 

  24. Yuan, X. et al. Expression of the green fluorescent protein in the oligodendrocyte lineage: a transgenic mouse for developmental and physiological studies. J. Neurosci. Res. 70, 529–545 (2002).

    Article  CAS  Google Scholar 

  25. Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

    Article  CAS  Google Scholar 

  26. Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).

    Article  CAS  Google Scholar 

  27. Armstrong, R.C., Le, T.Q., Frost, E.E., Borke, R.C. & Vana, A.C. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J. Neurosci. 22, 8574–8585 (2002).

    Article  CAS  Google Scholar 

  28. Murtie, J.C., Zhou, Y.X., Le, T.Q., Vana, A.C. & Armstrong, R.C. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol. Dis. 19, 171–182 (2005).

    Article  CAS  Google Scholar 

  29. Armstrong, R.C., Le, T.Q., Flint, N.C., Vana, A.C. & Zhou, Y.X. Endogenous cell repair of chronic demyelination. J. Neuropathol. Exp. Neurol. 65, 245–256 (2006).

    Article  Google Scholar 

  30. Mason, J.L., Xuan, S., Dragatsis, I., Efstratiadis, A. & Goldman, J.E. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J. Neurosci. 23, 7710–7718 (2003).

    Article  CAS  Google Scholar 

  31. Knapp, P.E. & Adams, M.H. Epidermal growth factor promotes oligodendrocyte process formation and regrowth after injury. Exp. Cell Res. 296, 135–144 (2004).

    Article  CAS  Google Scholar 

  32. Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl. Acad. Sci. USA 102, 18183–18188 (2005).

    Article  CAS  Google Scholar 

  33. Parras, C.M. et al. Mash 1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  Google Scholar 

  34. Ferrer, I. et al. Transforming growth factor-alpha (TGF-alpha) and epidermal growth factor-receptor (EGF-R) immunoreactivity in normal and pathologic brain. Prog. Neurobiol. 49, 99–123 (1996).

    Article  CAS  Google Scholar 

  35. Lisovoski, F. et al. Transforming growth factor alpha expression as a response of murine motor neurons to axonal injury and mutation-induced degeneration. J. Neuropathol. Exp. Neurol. 56, 459–471 (1997).

    Article  CAS  Google Scholar 

  36. Jin, K. et al. Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J. Neurosci. 22, 5365–5373 (2002).

    Article  CAS  Google Scholar 

  37. Nieto-Sampedro, M., Gomez-Pinilla, F., Knauer, D.J. & Broderick, J.T. Epidermal growth factor receptor immunoreactivity in rat brain astrocytes. Response to injury. Neurosci. Lett. 91, 276–282 (1988).

    Article  CAS  Google Scholar 

  38. Burrows, R.C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267 (1997).

    Article  CAS  Google Scholar 

  39. Matthieu, J.M., Comte, V., Tosic, M. & Honegger, P. Myelin gene expression during demyelination and remyelination in aggregating brain cell cultures. J. Neuroimmunol. 40, 231–434 (1992).

    Article  CAS  Google Scholar 

  40. Hidalgo, A. Interactive nervous system development: control of cell survival in Drosophila. Trends Neurosci. 25, 365–370 (2002).

    Article  CAS  Google Scholar 

  41. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    Article  CAS  Google Scholar 

  42. Gensert, J.M. & Goldman, J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).

    Article  CAS  Google Scholar 

  43. Goddard, D.R., Berry, M., Kirvell, S.L. & Butt, A.M. Fibroblast growth factor-2 inhibits myelin production by oligodendrocytes in vivo. Mol. Cell. Neurosci. 18, 557–569 (2001).

    Article  CAS  Google Scholar 

  44. Mason, J.L. & Goldman, J.E. A2B5+ and O4+ Cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol. Cell. Neurosci. 20, 30–42 (2002).

    Article  CAS  Google Scholar 

  45. Irvin, D.K., Dhaka, A., Hicks, C., Weinmaster, G. & Kornblum, H.I. Extrinsic and intrinsic factors governing cell fate in cortical progenitor cultures. Dev. Neurosci. 25, 162–172 (2003).

    Article  CAS  Google Scholar 

  46. Kessaris, N., Jamen, F., Rubin, L.L. & Richardson, W.D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289–1298 (2004).

    Article  CAS  Google Scholar 

  47. Kakita, A. & Goldman, J.E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999).

    Article  CAS  Google Scholar 

  48. Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–186 (2003).

    Article  CAS  Google Scholar 

  49. Marcus, J. et al. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53, 372–381 (2006).

    Article  CAS  Google Scholar 

  50. Mason, J.L., Langaman, C., Morell, P., Suzuki, K. & Matsushima, G.K. Episodic demyelination and subsequent remyelination with the murine central system changes in axonal caliber. Neuropathol. Appl. Neurobiol. 27, 50–58 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Ratner for the CNP-hEGFR mice, for encouragement and for valuable discussion. We thank F. Gage and J. Goldman for the gift of pNIT-GFP retrovirus, and D. Rowitch for the gift of anti-Olig1 and anti-Olig2 antibodies. We thank R. Armstrong and L.-J. Chew for their comments on this manuscript. We are particularly grateful to J. Corbin for discussion and for critically reading several versions of this manuscript. We also thank S. Temple, T. Haydar and B. Jablonska for their comments on an earlier version of the manuscript. We thank A. Baron-Van Evercooren for technical advice on the focal demyelination model and for discussion. We thank D. Bergles for technical advice on the experiments on compound action potentials. This work was supported by US National Institutes of Health R01NS045702 (V.G.), R21NS050463 (V.G.), and by US National Institutes of Health MRDDRC P30HD40677. Electron microscopy was performed at the Virginia Commonwealth University, Department of Neurobiology and Anatomy Microscopy Facility, supported, in part, with funding from US National Institutes of Health Center Core Grant 5P30NS047463.

Author information

Authors and Affiliations

Authors

Contributions

A.A. conducted all the experiments, except for the electrophysiology and electron microscopy, and wrote the manuscript together with V.G. J.L.D. performed the electron microscopy analysis, J.M.M. conducted the electrophysiology experiments and V.G. supervised the project and wrote the manuscript with A.A.

Corresponding author

Correspondence to Vittorio Gallo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 3659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguirre, A., Dupree, J., Mangin, J. et al. A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 10, 990–1002 (2007). https://doi.org/10.1038/nn1938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing