Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet

Abstract

The mechanisms underlying the precise targeting of tectal layers by ingrowing retinal axons are largely unknown. In zebrafish, individual axons choose one of four retinorecipient layers upon entering the tectum and remain restricted to this layer, despite continual remodeling and shifting of their terminal arbors. In dragnet mutants, by contrast, a large fraction of retinal axons aberrantly trespass between layers or form terminal arbors that span two layers. The dragnet gene, drg, encodes collagen IVα5 (Col4a5), a basement membrane component lining the surface of the tectum. Heparan sulfate proteoglycans (HSPGs) are normally associated with the tectal basement membrane but are dispersed in the dragnet mutant tectum. Zebrafish boxer (extl3) mutants, which are deficient in HSPG synthesis, show laminar targeting defects similar to those in dragnet. Our results show that the collagen IV sheet anchors secreted factors at the surface of the tectum, which serve as guidance cues for retinal axons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laminar organization of the retinotectal projection is perturbed in dragnet mutants.
Figure 2: Laminar targeting of individual retinal axons is disrupted in dragnet mutants.
Figure 3: The dragnet gene is required for maintaining laminar specificity during arbor remodeling.
Figure 4: The dragnet gene encodes collagen type IVα5 (Col4a5) and is expressed in the skin covering the tectum.
Figure 5: Collagen IV effect on laminar targeting is RGC-nonautonomous and independent of integrin-β1 signaling.
Figure 6: The basement membrane lining the surface of the tectum is disrupted in dragnet mutants.
Figure 7: Collagenase and heparitinase injections phenocopy the axon targeting defects of dragnet mutants.
Figure 8: Genetic evidence for a role of HSPGs in laminar targeting of retinotectal axons.

Similar content being viewed by others

References

  1. Sanes, J.R. & Yamagata, M. Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol. 9, 79–87 (1999).

    Article  CAS  Google Scholar 

  2. Nakamura, H. & Sugiyama, S. Polarity and laminar formation of the optic tectum in relation to retinal projection. J. Neurobiol. 59, 48–56 (2004).

    Article  CAS  Google Scholar 

  3. Lemke, G. & Reber, M. Retinotectal mapping: new insights from molecular genetics. Annu. Rev. Cell Dev. Biol. 21, 551–580 (2005).

    Article  CAS  Google Scholar 

  4. Yamagata, M. & Sanes, J.R. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets. Development 121, 3763–3776 (1995).

    CAS  PubMed  Google Scholar 

  5. Wohrn, J.C., Puelles, L., Nakagawa, S., Takeichi, M. & Redies, C. Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J. Comp. Neurol. 396, 20–38 (1998).

    Article  CAS  Google Scholar 

  6. Yamagata, M., Herman, J.P. & Sanes, J.R. Lamina-specific expression of adhesion molecules in developing chick optic tectum. J. Neurosci. 15, 4556–4571 (1995).

    Article  CAS  Google Scholar 

  7. Inoue, A. & Sanes, J.R. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431 (1997).

    Article  CAS  Google Scholar 

  8. Miskevich, F., Zhu, Y., Ranscht, B. & Sanes, J.R. Expression of multiple cadherins and catenins in the chick optic tectum. Mol. Cell. Neurosci. 12, 240–255 (1998).

    Article  CAS  Google Scholar 

  9. Liu, Q., Sanborn, K.L., Cobb, N., Raymond, P.A. & Marrs, J.A. R-cadherin expression in the developing and adult zebrafish visual system. J. Comp. Neurol. 410, 303–319 (1999).

    Article  CAS  Google Scholar 

  10. Takagi, S. et al. Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Dev. Biol. 170, 207–222 (1995).

    Article  CAS  Google Scholar 

  11. Braisted, J.E. et al. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev. Biol. 191, 14–28 (1997).

    Article  CAS  Google Scholar 

  12. Bartsch, S., Husmann, K., Schachner, M. & Bartsch, U. The extracellular matrix molecule tenascin: expression in the developing chick retinotectal system and substrate properties for retinal ganglion cell neurites in vitro. Eur. J. Neurosci. 7, 907–916 (1995).

    Article  CAS  Google Scholar 

  13. Perez, R.G. & Halfter, W. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Dev. Biol. 156, 278–292 (1993).

    Article  CAS  Google Scholar 

  14. Frost, D.O., Edwards, M.A., Sachs, G.M. & Caviness, V.S., Jr. Retinotectal projection in reeler mutant mice: relationships among axon trajectories, arborization patterns and cytoarchitecture. Brain Res. 393, 109–120 (1986).

    Article  CAS  Google Scholar 

  15. Xiao, T., Roeser, T., Staub, W. & Baier, H. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development 132, 2955–2967 (2005).

    Article  CAS  Google Scholar 

  16. Muto, A. et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. [online] 1, e66 (2005).

    Article  Google Scholar 

  17. Meyer, M.P. & Smith, S.J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).

    Article  CAS  Google Scholar 

  18. Schmidt, J.T., Buzzard, M., Borress, R. & Dhillon, S. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. J. Neurobiol. 42, 303–314 (2000).

    Article  CAS  Google Scholar 

  19. Hua, J.Y., Smear, M.C., Baier, H. & Smith, S.J. Regulation of axon growth in vivo by activity-based competition. Nature 434, 1022–1026 (2005).

    Article  CAS  Google Scholar 

  20. Easter, S.S. Jr. & Malicki, J.J. The zebrafish eye: developmental and genetic analysis. Results Probl. Cell Differ. 40, 346–370 (2002).

    Article  CAS  Google Scholar 

  21. Mould, A.P. et al. Identification of multiple integrin β1 homologs in zebrafish (Danio rerio). BMC Cell Biol. [online] 7, 24 (2006).

    Article  Google Scholar 

  22. Metcalfe, W.K., Myers, P.Z., Trevarrow, B., Bass, M.B. & Kimmel, C.B. Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110, 491–504 (1990).

    CAS  PubMed  Google Scholar 

  23. Sanes, J.R., Schachner, M. & Covault, J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J. Cell Biol. 102, 420–431 (1986).

    Article  CAS  Google Scholar 

  24. Kruse, J., Keilhauer, G., Faissner, A., Timpl, R. & Schachner, M. The J1 glycoprotein—a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 316, 146–148 (1985).

    Article  CAS  Google Scholar 

  25. Kruse, J. et al. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311, 153–155 (1984).

    Article  CAS  Google Scholar 

  26. Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628 (2004).

    Article  Google Scholar 

  27. Lee, J.S. & Chien, C.B. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat. Rev. Genet. 5, 923–935 (2004).

    Article  CAS  Google Scholar 

  28. Lee, J.-S. et al. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44, 947–960 (2004).

    Article  CAS  Google Scholar 

  29. Yamagata, M., Weiner, J.A., Dulac, C., Roth, K.A. & Sanes, J.R. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Mol. Cell. Neurosci. 33, 296–310 (2006).

    Article  CAS  Google Scholar 

  30. Robles, E. & Gomez, T.M. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci. 9, 1274–1283 (2006).

    Article  CAS  Google Scholar 

  31. Gaze, R.M., Keating, M.J. & Chung, S.H. The evolution of the retinotectal map during development in Xenopus. Proc. R. Soc. Lond. B 185, 301–330 (1974).

    Article  CAS  Google Scholar 

  32. Miner, J.H. & Sanes, J.R. Collagen IV α3, α4, and α5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127, 879–891 (1994).

    Article  CAS  Google Scholar 

  33. Son, Y.J., Patton, B.L. & Sanes, J.R. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur. J. Neurosci. 11, 3457–3467 (1999).

    Article  CAS  Google Scholar 

  34. Fox, M.A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007).

    Article  CAS  Google Scholar 

  35. White, D.J., Puranen, S., Johnson, M.S. & Heino, J. The collagen receptor subfamily of the integrins. Int. J. Biochem. Cell Biol. 36, 1405–1410 (2004).

    Article  CAS  Google Scholar 

  36. Vogel, W., Gish, G.D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23 (1997).

    Article  CAS  Google Scholar 

  37. Venstrom, K. & Reichardt, L. Beta 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol. Biol. Cell 6, 419–431 (1995).

    Article  CAS  Google Scholar 

  38. Halfter, W. & Schurer, B. Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum. J. Comp. Neurol. 397, 105–117 (1998).

    Article  CAS  Google Scholar 

  39. Halfter, W., Dong, S., Balasubramani, M. & Bier, M.E. Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev. Biol. 238, 79–96 (2001).

    Article  CAS  Google Scholar 

  40. Halfter, W., Dong, S., Yip, Y.P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 22, 6029–6040 (2002).

    Article  CAS  Google Scholar 

  41. Hu, H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat. Neurosci. 4, 695–701 (2001).

    Article  CAS  Google Scholar 

  42. Van Vactor, D., Wall, D.P. & Johnson, K.G. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr. Opin. Neurobiol. 16, 40–51 (2006).

    Article  CAS  Google Scholar 

  43. Stier, H. & Schlosshauer, B. Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Eur. J. Neurosci. 10, 1000–1010 (1998).

    Article  CAS  Google Scholar 

  44. Barker, D.F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  Google Scholar 

  45. Hudson, B.G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E.G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  Google Scholar 

  46. Kawakami, H. et al. Chronic nephritis, sensorineural deafness, growth and developmental retardation, hyperkinesis, and cleft soft palate in a 5-year-old boy. A new combination? Nephron 56, 214–217 (1990).

    Article  CAS  Google Scholar 

  47. Shields, G.W., Pataki, C. & DeLisi, L.E. A family with Alport syndrome and psychosis. Schizophr. Res. 3, 235–239 (1990).

    Article  CAS  Google Scholar 

  48. Sener, R.N. Hereditary nephritis (Alport syndrome): MR imaging findings in the brain. Comput. Med. Imaging Graph. 22, 71–72 (1998).

    Article  CAS  Google Scholar 

  49. Scott, E.K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods. 4, 323–326 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.F. Reichardt, S. Pleasure, N. Shah, W. Staub and L. Nevin for their advice and comments on this manuscript. M. Berberoglu contributed data to the axon counts in BGUG fish. C.-B. Chien (University of Utah) kindly provided boxer mutants and 10E4 antibody. This work was supported by the US National Institutes of Health (R01-EY013855 and R01-EY012406 to H.B. and a neuroscience postdoctoral training grant fellowship to T.X.) H.B. was further supported by a David and Lucile Packard Fellowship and an Esther and Joseph Klingenstein Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

T.X. carried out all the experiments and prepared the figures. H.B. conceived the project and wrote the paper together with T.X.

Corresponding author

Correspondence to Herwig Baier.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods (PDF 4546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, T., Baier, H. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat Neurosci 10, 1529–1537 (2007). https://doi.org/10.1038/nn2002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing