Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent gating of lateral inhibition in the mouse olfactory bulb

Abstract

Lateral inhibition is a circuit motif found throughout the nervous system that often generates contrast enhancement and center-surround receptive fields. We investigated the functional properties of the circuits mediating lateral inhibition between olfactory bulb principal neurons (mitral cells) in vitro. We found that the lateral inhibition received by mitral cells is gated by postsynaptic firing, such that a minimum threshold of postsynaptic activity is required before effective lateral inhibition is recruited. This dynamic regulation allows the strength of lateral inhibition to be enhanced between cells with correlated activity. Simulations show that this regulation of lateral inhibition causes decorrelation of mitral cell activity that is evoked by similar stimuli, even when stimuli have no clear spatial structure. These results show that this previously unknown mechanism for specifying lateral inhibitory connections allows functional inhibitory connectivity to be dynamically remapped to relevant populations of neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity-dependent gating of lateral inhibition.
Figure 2: Activity-dependent gating of lateral inhibition in mitral cell pairs.
Figure 3: Summary results of activity-dependent lateral inhibition.
Figure 4: Lateral inhibition evoked by direct stimulation of granule cells.
Figure 5: Overlapping and cooperative activation of granule cells following mitral cell stimulation.
Figure 6: Activity-dependent lateral inhibition enhances contrast and decorrelates similar patterns of activity.

Similar content being viewed by others

References

  1. Hirsch, J.A. & Gilbert, C.D. Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 11, 1800–1809 (1991).

    Article  CAS  Google Scholar 

  2. Urban, N.N. Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77, 607–612 (2002).

    Article  CAS  Google Scholar 

  3. Friedrich, R.W. & Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001).

    Article  CAS  Google Scholar 

  4. Linster, C., Sachse, S. & Galizia, C.G. Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J. Neurophysiol. 93, 3410–3417 (2005).

    Article  Google Scholar 

  5. Kuffler, S.W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  Google Scholar 

  6. Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).

    Article  CAS  Google Scholar 

  7. Jahr, C.E. & Nicoll, R.A. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol. (Lond.) 326, 213–234 (1982).

    Article  CAS  Google Scholar 

  8. Uchida, N., Takahashi, Y.K., Tanifuji, M. & Mori, K. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat. Neurosci. 3, 1035–1043 (2000).

    Article  CAS  Google Scholar 

  9. Takahashi, Y.K., Kurosaki, M., Hirono, S. & Mori, K. Topographic representation of odorant molecular features in the rat olfactory bulb. J. Neurophysiol. 92, 2413–2427 (2004).

    Article  CAS  Google Scholar 

  10. Friedrich, R.W. & Korsching, S.I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737–752 (1997).

    Article  CAS  Google Scholar 

  11. Malnic, B., Hirono, J., Sato, T. & Buck, L.B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  Google Scholar 

  12. Egger, V. & Urban, N.N. Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin. Cell Dev. Biol. 17, 424–432 (2006).

    Article  Google Scholar 

  13. Willhite, D.C. et al. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc. Natl. Acad. Sci. USA. 103, 12592–12597 (2006).

    Article  CAS  Google Scholar 

  14. Rubin, B.D. & Katz, L.C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    Article  CAS  Google Scholar 

  15. Meister, M. & Bonhoeffer, T. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21, 1351–1360 (2001).

    Article  CAS  Google Scholar 

  16. Shepherd, G.M. & Greer, C.A. Olfactory bulb. in The Synaptic Organization of the Brain (ed. Shepherd, G.M.) (Oxford University Press, New York, 2004).

    Chapter  Google Scholar 

  17. Schoppa, N.E. & Urban, N.N. Dendritic processing within olfactory bulb circuits. Trends Neurosci. 26, 501–506 (2003).

    Article  CAS  Google Scholar 

  18. Orona, E., Rainer, E.C. & Scott, J.W. Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J. Comp. Neurol. 226, 346–356 (1984).

    Article  CAS  Google Scholar 

  19. Mori, K., Kishi, K. & Ojima, H. Distribution of dendrites of mitral, displaced mitral, tufted and granule cells in the rabbit olfactory bulb. J. Comp. Neurol. 219, 339–355 (1983).

    Article  CAS  Google Scholar 

  20. Price, J.L. & Powell, T.P. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 125–155 (1970).

    CAS  PubMed  Google Scholar 

  21. Kapfer, C., Glickfeld, L.L., Atallah, B.V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10, 743–753 (2007).

    Article  CAS  Google Scholar 

  22. Laurent, G. A systems perspective on early olfactory coding. Science 286, 723–728 (1999).

    Article  CAS  Google Scholar 

  23. Dietz, S.B. & Murthy, V.N. Contrasting short-term plasticity at two sides of the mitral-granule reciprocal synapse in the mammalian olfactory bulb. J. Physiol. (Lond.) 569, 475–488 (2005).

    Article  CAS  Google Scholar 

  24. Abraham, N.M. et al. Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876 (2004).

    CAS  PubMed  Google Scholar 

  25. Uchida, N. & Mainen, Z.F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    Article  CAS  Google Scholar 

  26. Kapoor, V. & Urban, N.N. Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network. J. Neurosci. 26, 11709–11719 (2006).

    Article  CAS  Google Scholar 

  27. Urban, N.N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J. Physiol. (Lond.) 542, 355–367 (2002).

    Article  CAS  Google Scholar 

  28. Margrie, T.W., Sakmann, B. & Urban, N.N. Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc. Natl. Acad. Sci. USA 98, 319–324 (2001).

    Article  CAS  Google Scholar 

  29. Isaacson, J.S. & Strowbridge, B.W. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20, 749–761 (1998).

    Article  CAS  Google Scholar 

  30. Schoppa, N.E. & Westbrook, G.L. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat. Neurosci. 2, 1106–1113 (1999).

    Article  CAS  Google Scholar 

  31. Friedrich, R.W. & Stopfer, M. Recent dynamics in olfactory population coding. Curr. Opin. Neurobiol. 11, 468–474 (2001).

    Article  CAS  Google Scholar 

  32. Wilson, R.I., Turner, G.C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

    Article  CAS  Google Scholar 

  33. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    Article  CAS  Google Scholar 

  34. Schoppa, N.E. & Westbrook, G.L. AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nat. Neurosci. 5, 1194–1202 (2002).

    Article  CAS  Google Scholar 

  35. Carlson, G.C., Shipley, M.T. & Keller, A. Long-lasting depolarizations in mitral cells of the rat olfactory bulb. J. Neurosci. 20, 2011–2021 (2000).

    Article  CAS  Google Scholar 

  36. Schoppa, N.E., Kinzie, J.M., Sahara, Y., Segerson, T.P. & Westbrook, G.L. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18, 6790–6802 (1998).

    Article  CAS  Google Scholar 

  37. Egger, V., Svoboda, K. & Mainen, Z.F. Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J. Neurosci. 25, 3521–3530 (2005).

    Article  CAS  Google Scholar 

  38. Egana, J.I., Aylwin, M.L. & Maldonado, P.E. Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb. Neuroscience 134, 1069–1080 (2005).

    Article  CAS  Google Scholar 

  39. Mori, K., Takahashi, Y.K., Igarashi, K.M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    Article  CAS  Google Scholar 

  40. Johnson, B.A., Farahbod, H., Xu, Z., Saber, S. & Leon, M. Local and global chemotopic organization: general features of the glomerular representations of aliphatic odorants differing in carbon number. J. Comp. Neurol. 480, 234–249 (2004).

    Article  CAS  Google Scholar 

  41. Leutgeb, S., Leutgeb, J.K., Moser, M.B. & Moser, E.I. Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol. 15, 738–746 (2005).

    Article  CAS  Google Scholar 

  42. Wang, Y., Fujita, I. & Murayama, Y. Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nat. Neurosci. 3, 807–813 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to A.T. Schaefer and members of the Urban laboratory for helpful comments and discussion. This work was supported by the grants from the National Institute of Deafness and Other Communication Disorders (F30 DC008274, A.A.; R01 DC005798, N.U.) and by a fellowship from the National Science Foundation Integrative Graduate Education and Research Traineeship program (NSF DGE-9987588, A.A.).

Author information

Authors and Affiliations

Authors

Contributions

A.A. and N.U. designed all experiments (including computational) except for those in Figure 5, which were designed by V.K. and N.U. A.A. conducted and analyzed all experiments except for those in Figure 5, which were conducted and analyzed by V.K. A.A. and N.U. wrote the manuscript.

Corresponding author

Correspondence to Nathaniel N Urban.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1941 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arevian, A., Kapoor, V. & Urban, N. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat Neurosci 11, 80–87 (2008). https://doi.org/10.1038/nn2030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing