Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TNFα promotes proliferation of oligodendrocyte progenitors and remyelination

Abstract

Here we used mice lacking tumor necrosis factor-α (TNFα) and its associated receptors to study a model of demyelination and remyelination in which these events could be carefully controlled using a toxin, cuprizone. Unexpectedly, the lack of TNFα led to a significant delay in remyelination as assessed by histology, immunohistochemistry for myelin proteins and electron microscopy coupled with morphometric analysis. Failure of repair correlated with a reduction in the pool of proliferating oligodendrocyte progenitors (bromodeoxyuridine-labeled NG2+ cells) followed by a reduction in the number of mature oligodendrocytes. Analysis of mice lacking TNF receptor 1 (TNFR1) or TNFR2 indicated that TNFR2, not TNFR1, is critical to oligodendrocyte regeneration. This unexpected reparative role for TNFα in the CNS is important for understanding oligodendrocyte regeneration/proliferation, nerve remyelination and the design of new therapeutics for demyelinating diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TNFα and receptor expression during demyelination and remyelination.
Figure 2: Effects of TNFα during demyelination.
Figure 3: Effects of TNFα, TNFR1 and TNFR2 during remyelination.
Figure 4: Analysis of oligodendrocyte progenitors during remyelination.
Figure 5: The lack of lymphocyte involvement in remyelination.

Similar content being viewed by others

References

  1. Ludwin, S. K. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab. Invest. 39, 597–612 (1978).

    CAS  PubMed  Google Scholar 

  2. Yajima, K. & Suzuki, K. Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab. Invest. 41, 385–392 (1979).

    CAS  PubMed  Google Scholar 

  3. Gensert, J. M. & Goldman, J. E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).

    Article  CAS  Google Scholar 

  4. Ludwin, S. K. Proliferation of mature oligodendrocytes after trauma to the central nervous system. Nature 308, 274–275 (1984).

    Article  CAS  Google Scholar 

  5. Yu, W. P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).

    Article  CAS  Google Scholar 

  6. Barres, B. A. et al. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367, 371–375 (1994).

    Article  CAS  Google Scholar 

  7. Hajihosseini, M., Tham, T. N. & Dubois-Dalcq, M. Origin of oligodendrocytes within the human spinal cord. J. Neurosci. 16, 7981–7994 (1996).

    Article  CAS  Google Scholar 

  8. Small, R. K., Riddle, P. & Noble, M. Evidence for migration of oligodendrocyte-type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328, 155–157 (1987).

    Article  CAS  Google Scholar 

  9. Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).

    Article  CAS  Google Scholar 

  10. Hinks, G. L. & Franklin, R. J. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol. Cell. Neurosci. 16, 542–556 (2000).

    Article  CAS  Google Scholar 

  11. Mason, J. L. et al. Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J. Neurosci. Res. 61, 251–262 (2000).

    Article  CAS  Google Scholar 

  12. Declercq, W., Denecker, G., Fiers, W. & Vandenabeele, P. Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J. Immunol. 161, 390–399 (1998).

    CAS  PubMed  Google Scholar 

  13. Haridas, V., Darnay, B. G., Natarajan, K., Heller, R. & Aggarwal, B. B. Overexpression of the p80 TNF receptor leads to TNF-dependent apoptosis, nuclear factor-κ B activation, and c-Jun kinase activation. J. Immunol. 160, 3152–3162 (1998).

    CAS  PubMed  Google Scholar 

  14. Weiss, T. et al. TNFR80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR-associated factor 2 and is specific for TNFR60. J. Immunol. 161, 3136–3142 (1998).

    CAS  PubMed  Google Scholar 

  15. Ashkenazi, A. & Dixit, V. M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255–260 (1999).

    Article  CAS  Google Scholar 

  16. Chaplin, D. D. & Fu, Y. Cytokine regulation of secondary lymphoid organ development. Curr. Opin. Immunol. 10, 289–297 (1998).

    Article  CAS  Google Scholar 

  17. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  Google Scholar 

  18. Shohami, E., Ginis, I. & Hallenbeck, J. M. Dual role of tumor necrosis factor α in brain injury. Cytokine Growth Factor Rev. 10, 119–130 (1999).

    Article  CAS  Google Scholar 

  19. Liu, J. et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat. Med. 4, 78–83 (1998).

    Article  CAS  Google Scholar 

  20. Kassiotis, G. & Kollias, G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level. Implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med. 193, 427–434 (2001).

    Article  CAS  Google Scholar 

  21. The Lenercept Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

  22. van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  23. Matsushima, G. K. & Morell, P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 11, 107–116 (2001).

    Article  CAS  Google Scholar 

  24. Hiremath, M. M. et al. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 92, 38–49 (1998).

    Article  CAS  Google Scholar 

  25. Morell, P. et al. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol. Cell. Neurosci. 12, 220–227 (1998).

    Article  CAS  Google Scholar 

  26. Tansey, F. A., Zhang, H. & Cammer, W. Rapid upregulation of the Pi isoform of glutathione-S-transferase in mouse brains after withdrawal of the neurotoxicant, cuprizone. Mol. Chem. Neuropathol. 31, 161–170 (1997).

    Article  CAS  Google Scholar 

  27. Coetzee, T. et al. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86, 209–219 (1996).

    Article  CAS  Google Scholar 

  28. Miller, D. J., Sanborn, K. S., Katzmann, J. A. & Rodriguez, M. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J. Neurosci. 14, 6230–6238 (1994).

    Article  CAS  Google Scholar 

  29. Genain, C. P., Cannella, B., Hauser, S. L. & Raine, C. S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 5, 170–175 (1999).

    Article  CAS  Google Scholar 

  30. Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291 (1996).

    Article  CAS  Google Scholar 

  31. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNF α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  32. Marino, M. W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 8093–8098 (1997).

    Article  CAS  Google Scholar 

  33. Keirstead, H. S. & Blakemore, W. F. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv. Exp. Med. Biol. 468, 183–197 (1999).

    Article  CAS  Google Scholar 

  34. Tchelingerian, J. L., Monge, M., Le Saux, F., Zalc, B. & Jacque, C. Differential oligodendroglial expression of the tumor necrosis factor receptors in vivo and in vitro. J. Neurochem. 65, 2377–2380 (1995).

    Article  CAS  Google Scholar 

  35. Dopp, J. M., Mackenzie-Graham, A., Otero, G. C. & Merrill, J. E. Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J. Neuroimmunol. 75, 104–112 (1997).

    Article  CAS  Google Scholar 

  36. Raine, C. S., Bonetti, B. & Cannella, B. Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev. Neurol. (Paris) 154, 577–585 (1998).

    CAS  Google Scholar 

  37. Wu, J., Kuo, J., Liu, Y. & Tzeng, S. Tumor necrosis factor-α modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neurosci. Lett. 292, 203–206 (2000).

    Article  CAS  Google Scholar 

  38. Ruddle, N. H. et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med. 172, 1193–1200 (1990).

    Article  CAS  Google Scholar 

  39. Korner, H. et al. Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J. Exp. Med. 186, 1585–1590 (1997).

    Article  CAS  Google Scholar 

  40. Croxford, J. L. et al. Gene therapy for chronic relapsing experimental allergic encephalomyelitis using cells expressing a novel soluble p75 dimeric TNF receptor. J. Immunol. 164, 2776–2781 (2000).

    Article  CAS  Google Scholar 

  41. Akassoglou, K. et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am. J. Pathol. 153, 801–813 (1998).

    Article  CAS  Google Scholar 

  42. Schiffenbauer, J. et al. The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin. Immunol. 95, 117–123 (2000).

    Article  CAS  Google Scholar 

  43. Mason, J. L., Suzuki, K., Chaplin, D. D. & Matsushima, G. K. Interleukin-1β promotes repair of the CNS. J. Neurosci. 21, 7046–7052 (2001).

    Article  CAS  Google Scholar 

  44. Sidman, R. L., Abervine, J. B. & Pierce, E. T. Atlas of the Mouse Brain and Spinal Cord (Harvard Univ. Press, Cambridge, Massachusetts, 1971).

    Google Scholar 

  45. Tansey, F. A. & Cammer, W. A pi form of glutathione-S-transferase is a myelin- and oligodendrocyte-associated enzyme in mouse brain. J. Neurochem. 57, 95–102 (1991).

    Article  CAS  Google Scholar 

  46. Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H. & Stallcup, W. B. Interaction between NG2 proteoglycan and PDGF α-receptor on O2A progenitor cells is required for optimal response to PDGF. J. Neurosci. Res. 43, 315–330 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants NS34190 (J.P.-Y.T.) and NS24453 (K.S.), as well as NMSS grants RG185 (J.P.-Y.T.) and RG254B (G.K.M.). We thank L. Old for the use of the TNFα−/− mice and R. Bagnell for his expertise in electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny P.-Y. Ting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnett, H., Mason, J., Marino, M. et al. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4, 1116–1122 (2001). https://doi.org/10.1038/nn738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing