Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of cerebral cortical patterning in mice and humans

Abstract

All the higher mental and cognitive functions unique to humans depend on the neocortex ('new' cortex, referring to its relatively recent appearance in evolution), which is divided into discrete areas that subserve distinct functions, such as language, movement and sensation. With a few notable exceptions, all neocortical areas have six layers of neurons and a remarkably similar thickness and overall cell density, despite subtle differences in their cellular architecture. Furthermore, all neocortical areas are formed over roughly the same time period during development and provide little hint at early developmental stages of the rich functional diversity that becomes apparent as development comes to an end. How these areas are formed has long fascinated developmental neuroscientists, because the formation of new cortical areas, with the attendant appearance of new cortical functions, is what must have driven the evolution of mammalian behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphogenesis of the forebrain.
Figure 2: Organizers of the cortical VZ.

Amy Center

Figure 3: Clonal patterns and human cortical dysplasia.
Figure 4: Human holoprosencephaly.
Figure 5: Human schizencephaly.
Figure 6: Events in cortical patterning.
Figure 7: Human symmetric polymicrogyria.

Similar content being viewed by others

References

  1. Van der Loos, H. & Woolsey, T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395–398 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. O'Leary, D. D. Do cortical areas emerge from a protocortex? Trends Neurosci. 12, 400–406 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Sur, M. & Leamey, C. A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Levitt, P. A monoclonal antibody to limbic system neurons. Science 223, 299–301 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Barbe, M. F. & Levitt, P. The early commitment of fetal neurons to the limbic cortex. J. Neurosci. 11, 519–533 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arimatsu, Y. et al. Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc. Natl. Acad. Sci. USA 89, 8879–8883 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohen-Tannoudji, M., Babinet, C. & Wassef, M. Early determination of a mouse somatosensory cortex marker. Nature 368, 460–463 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, S. W. & Rubenstein, J. L. Induction and dorsoventral patterning of the telencephalon. Neuron 28, 641–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Mione, M. C., Danevic, C., Boardman, P., Harris, B. & Parnavelas, J. G. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J. Neurosci. 14, 107–123 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Ware, M. L., Tavazoie, S. F., Reid, C. B. & Walsh, C. A. Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb. Cortex 9, 636–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Parnavelas, J. G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Spreafico, R. et al. Cortical dysplasia: an immunocytochemical study of three patients. Neurology 50, 27–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Najm, I. M. et al. Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia 41, 971–976 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Crino, P. B., Duhaime, A. C., Baltuch, G. & White, R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 56, 906–913 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Walsh, C. & Cepko, C. L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434–440 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. McCarthy, M., Turnbull, D. H., Walsh, C. A. & Fishell, G. Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J. Neurosci. 21, 6772–6781 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson, S., Mione, M., Yun, K. & Rubenstein, J. L. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Reid, C. B., Tavazoie, S. F. & Walsh, C. A. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124, 2441–2450 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Monuki, E. S., Porter, F. D. & Walsh, C. A. Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron (in press).

  29. Keverne, E. B. GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res. Bull. 48, 467–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Benes, F. M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Shimamura, K. & Rubenstein, J. L. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron 8, 957–966 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Dou, C. L., Li, S. & Lai, E. Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb. Cortex 9, 543–550 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Golden, J. A. Holoprosencephaly: a defect in brain patterning. J. Neuropathol. Exp. Neurol. 57, 991–999 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Yakovlev, P. I. Pathoarchitectonic studies of cerebral malformations: III. Arrhinencephalies (Holoprosencephaly). J. Neuropathol. Exp. Neurol. 18, 22–55 (1959).

    Article  CAS  PubMed  Google Scholar 

  37. Muenke, M. & Beachy, P. A. Genetics of ventral forebrain development and holoprosencephaly. Curr. Opin. Genet. Dev. 10, 262–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Jessell, T. M. & Lumsden, A. in Molecular and Cellular Approaches to Neural Development (eds. Cowan, W. M., Jessell, T. M. & Zipursky, S. L.) 290–333 (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  40. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wallis, D. E. et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat. Genet. 22, 196–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Pasquier, L. et al. A new mutation in the six-domain of SIX3 gene causes holoprosencephaly. Eur. J. Hum. Genet. 8, 797–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Brown, S. A. et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat. Genet. 20, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, L. Y. et al. Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum. Mol. Genet. 10, 791–796 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Nanni, L. et al. The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum. Mol. Genet. 8, 2479–2488 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Gripp, K. W. et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat. Genet. 25, 205–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Oliver, G. et al. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Nagai, T. et al. Zic2 regulates the kinetics of neurulation. Proc. Natl. Acad. Sci. USA 97, 1618–1623 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Baker, J. C. & Harland, R. M. From receptor to nucleus: the Smad pathway. Curr. Opin. Genet. Dev. 7, 467–473 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Wotton, D., Lo, R. S., Lee, S. & Massague, J. A Smad transcriptional corepressor. Cell 97, 29–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tole, S., Ragsdale, C. W. & Grove, E. A. Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes(J). Dev. Biol. 217, 254–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Bulchand, S., Grove, E. A., Porter, F. D. & Tole, S. LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech. Dev. 100, 165–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Diaz-Benjumea, F. J. & Cohen, S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75, 741–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Williams, J. A., Paddock, S. W. & Carroll, S. B. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development 117, 571–584 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Blair, S. S., Brower, D. L., Thomas, J. B. & Zavortink, M. The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development 120, 1805–1815 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Barbe, M. F. & Levitt, P. Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant. Proc. Natl. Acad. Sci. USA 89, 3706–3710 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barbe, M. F. & Levitt, P. Age-dependent specification of the corticocortical connections of cerebral grafts. J. Neurosci. 15, 1819–1834 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levitt, P. & Eagleson, K. L. Regionalization of the cerebral cortex: developmental mechanisms and models. Novartis Found. Symp. 228, 173–181 (2000).

    CAS  PubMed  Google Scholar 

  62. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Solloway, M. J. & Robertson, E. J. Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126, 1753–1768 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, S. M., Tole, S., Grove, E. & McMahon, A. P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Galceran, J., Miyashita-Lin, E. M., Devaney, E., Rubenstein, J. L. & Grosschedl, R. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127, 469–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Ikeya, M., Lee, S. M., Johnson, J. E., McMahon, A. P. & Takada, S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Bishop, K. M., Goudreau, G. & O'Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat. Neurosci. 3, 679–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Brunelli, S. et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat. Genet. 12, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Capra, V. et al. Schizencephaly: surgical features and new molecular genetic results. Eur. J. Pediatr. Surg. 6 Suppl 1, 27–29 (1996).

    Article  Google Scholar 

  72. Granata, T. et al. Familial schizencephaly associated with EMX2 mutation. Neurology 48, 1403–1406 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Warren, N. et al. The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb. Cortex 9, 627–635 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Sisodiya, S. M. et al. PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat. Genet. 28, 214–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 7, 463–471 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, Y. et al. LH-2: a LIM/homeodomain gene expressed in developing lymphocytes and neural cells. Proc. Natl. Acad. Sci. USA 90, 227–231 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Donoghue, M. J. & Rakic, P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Goodman, C. S. Mechanisms and molecules that control growth cone guidance. Annu. Rev. Neurosci. 19, 341–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Vanderhaeghen, P. et al. A mapping label required for normal scale of body representation in the cortex. Nat. Neurosci. 3, 358–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Pimenta, A. F. et al. The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting. Neuron 15, 287–297 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Mann, F., Zhukareva, V., Pimenta, A., Levitt, P. & Bolz, J. Membrane-associated molecules guide limbic and nonlimbic thalamocortical projections. J. Neurosci. 18, 9409–9419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. O'Leary, D. D. & Wilkinson, D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feng, G. et al. Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron 25, 295–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Prakash, N. et al. Malformation of the functional organization of somatosensory cortex in adult ephrin-A5 knock-out mice revealed by in vivo functional imaging. J. Neurosci. 20, 5841–5847 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Toresson, H., Potter, S. S. & Campbell, K. Genetic control of dorsal–ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Corbin, J. G., Gaiano, N., Machold, R. P., Langston, A. & Fishell, G. The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Yun, K., Potter, S. & Rubenstein, J. L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Guerreiro, M. M. et al. Familial perisylvian polymicrogyria: a new familial syndrome of cortical maldevelopment. Ann. Neurol. 48, 39–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Barkovich, A. J., Hevner, R. & Guerrini, R. Syndromes of bilateral symmetrical polymicrogyria. Am. J. Neuroradiol. 20, 1814–1821 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Straussberg, R., Gross, S., Amir, J. & Gadoth, N. A new autosomal recessive syndrome of pachygyria. Clin. Genet. 50, 498–501 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, Q., Behringer, R. R. & de Crombrugghe, B. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat. Genet. 13, 275–283 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Altman, J. & Bayer, S. A. Atlas of Prenatal Rat Brain Development 589 (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  97. Barkovich, A. J., Kuzniecky, R. I., Bollen, A. W. & Grant, P. E. Focal transmantle dysplasia: a specific malformation of cortical development. Neurology 49, 1148–1152 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Flanagan, M. Nieto, and E. Olson for comments on the manuscript. E.S.M. is supported by the NIMH, and C.A.W. is supported by the NINDS and the March of Dimes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. Monuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monuki, E., Walsh, C. Mechanisms of cerebral cortical patterning in mice and humans. Nat Neurosci 4 (Suppl 11), 1199–1206 (2001). https://doi.org/10.1038/nn752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing