Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors

Abstract

Seven-transmembrane-domain proteins encoded by the vomeronasal receptor V1r and V2r gene superfamilies, and expressed by vomeronasal sensory neurons, are believed to be pheromone receptors in rodents. Four V1r gene families have been described in the mouse (V1ra, V1rb, V1rc and V3r). Here we have screened near-complete mouse genomic databases to obtain a first global draft of the mouse V1r repertoire, including 104 new V1r genes. It comprises eight new and extremely isolated families in addition to the four families previously identified. Members of these new families were expressed in vomeronasal sensory neurons. The genome-wide view revealed great sequence diversity within the V1r superfamily. Phylogenetic analyses suggested an ancient original radiation, followed by the isolation, divergence and expansion of families by extensive gene duplications and frequent gene loss. The isolated nature of these gene families probably reflects a specialization of different receptor classes in the detection of specific types of chemicals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mouse V1r repertoire.
Figure 2: Ranges of amino-acid sequence identity between and within V1r families.
Figure 3: Sequence conservation within the mouse V1r superfamily.
Figure 4: V1r gene expression within sensory neurons of the mouse VNO.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Halpern, M. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10, 325–362 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Keverne, E. B. The vomeronasal organ. Science 286, 716–720 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Karlson, P. & Lüscher, M. “Pheromones”: a new term for a class of biologically active substances. Nature 183, 55–56 (1959).

    Article  CAS  PubMed  Google Scholar 

  4. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ryba, N. J. P. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, Y., Oh, B. C. & Stryer, L. Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc. Natl. Acad. Sci. USA 95, 11987–11992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naito, T. et al. Putative pheromone receptors related to the Ca2+-sensing receptor in Fugu. Proc. Natl. Acad. Sci. USA 95, 5178–5181 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Speca, D. J. et al. Functional identification of a goldfish odorant receptor. Neuron 23, 487–498 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Berghard, A. & Buck, L. B. Sensory transduction in vomeronasal neurons: evidence for Gαo, Gαi2, G, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16, 909–918 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia, C. & Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and Goα) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Norlin, E. M. & Berghard, A. Spatially restricted expression of regulators of G-protein signaling in primary olfactory neurons. Mol. Cell. Neurosci. 17, 872–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Saito, H., Mimmack, M. L., Keverne, E. B., Kishimoto, J. & Emson, P. C. Isolation of mouse vomeronasal receptor genes and their co-localization with specific G-protein messenger RNAs. Mol. Brain Res. 60, 215–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Del Punta, K., Rothman, A., Rodriguez, I. & Mombaerts, P. Sequence diversity and genomic organization of vomeronasal receptor genes in the mouse. Genome Res. 10, 1958–1967 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pantages, E. & Dulac, C. A novel family of candidate pheromone receptors in mammals. Neuron 28, 835–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez, I., Greer, C. A., Mok, M. Y. & Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat. Genet. 25, 18–19 (2000).

    Article  Google Scholar 

  22. Giorgi, D., Friedman, C., Trask, B. J. & Rouquier, S. Characterization of nonfunctional V1R-like pheromone receptor sequences in human. Genome Res. 10, 1979–1985 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gorodkin, J., Heyer, L. J., Brunak, S. & Stormo, G. D. Displaying the information contents of structural RNA alignments: the structure logos. Comput. Appl. Biosci. 13, 583–586 (1997).

    CAS  PubMed  Google Scholar 

  25. Otaki, J. M. & Firestein, S. Length analyses of mammalian G-protein-coupled receptors. J. Theor. Biol. 211, 77–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The complete human olfactory subgenome. Genome Res. 11, 685–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zozulya, S., Echeverri, F. & Nguyen, T. The human olfactory receptor repertoire. Genome Biol. 2, 0018.1–0018.12 (2001).

    Article  Google Scholar 

  28. Zhang, X. & Firestein, S. The entire mouse olfactory subgenome. Nat. Neurosci. 5, 124–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Novotny, M., Harvey, S., Jemiolo, B. & Alberts, J. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Novotny, M., Jemiolo, B., Harvey, S., Wiesler, D. & Marchlewska-Koj, A. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231, 722–725 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Novotny, M. V. et al. A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. Chem. Biol. 6, 377–383 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Wysocki, C. J. & Lepri, J. J. Consequences of removing the vomeronasal organ. J. Steroid Biochem. Mol. Biol. 39, 661–669 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Hildebrand, J. G. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92, 67–74 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sam, M. et al. Odorants may arouse instinctive behaviours. Nature 412, 142 (2001).

  35. Wang, D., Jiang, X. C., Chen, P., Inouchi, J. & Halpern, M. Chemical and immunological analysis of prey-derived vomeronasal stimulants. Brain Behav. Evol. 41, 246–254 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Wallace, K. J. & Rosen, J. B. Predator odor as an unconditioned fear stimulus in rats: elicitation of freezing by trimethylthiazoline, a component of fox feces. Behav. Neurosci. 114, 912–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Birkett, M. A. et al. New roles for cis-jasmone as an insect semiochemical and in plant defence. Proc. Natl. Acad. Sci. USA 97, 9329–9334 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swanson, W. J. & Vacquier, V. D. Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc. Natl. Acad. Sci. USA 92, 4957–4961 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Metz, E. C. & Palumbi, S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein binding. Mol. Biol. Evol. 13, 397–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Ting, C. T., Tsaur, S. C., Wu, M. L. & Wu, C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1428–1429 (1998).

    Article  Google Scholar 

  41. Cadavid, L. F. et al. Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proc. Natl. Acad. Sci. USA 94, 14536–14541 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strotmann, J., Wanner, I., Helfrich, T., Beck, A. & Breer, H. Rostrocaudal patterning of receptor expressing neurones in the rat nasal cavity. Cell. Tissue Res. 278, 11–20 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Hirota, S. et al. Localization of mRNA for c-kit receptor and its ligand in the brain of adult rats: an analysis using in situ hybridization. Mol. Brain Res. 15, 47–54 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Jukam for technical assistance, L. Vosshall, T. Perry and P. Feinstein for useful comments, N. Zinder for his support, and Celera Genomics for agreeing to release the sequence data into the public domain. I.R. received postdoctoral fellowship support from the Swiss National Foundation for Research, A.R. from the US National Institutes of Health, and T.I. from the Charles H. Revson Biomedical Research Foundation. P.M. received grant support from the March of Dimes Birth Defects Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan Rodriguez or Peter Mombaerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, I., Del Punta, K., Rothman, A. et al. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci 5, 134–140 (2002). https://doi.org/10.1038/nn795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing