Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1

Abstract

In the urinary bladder, the capsaicin-gated ion channel TRPV1 is expressed both within afferent nerve terminals and within the epithelial cells that line the bladder lumen. To determine the significance of this expression pattern, we analyzed bladder function in mice lacking TRPV1. Compared with wild-type littermates, trpv1−/− mice had a higher frequency of low-amplitude, non-voiding bladder contractions. This alteration was accompanied by reductions in both spinal cord signaling and reflex voiding during bladder filling (under anesthesia). In vitro, stretch-evoked ATP release and membrane capacitance changes were diminished in bladders excised from trpv1−/− mice, as was hypoosmolality-evoked ATP release from cultured trpv1−/− urothelial cells. These findings indicate that TRPV1 participates in normal bladder function and is essential for normal mechanically evoked purinergic signaling by the urothelium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal bladder structure but abnormal bladder function in trpv1−/− mice.
Figure 2: Loss of bladder function phenotypes observed in trpv1−/− mice.
Figure 3: Impaired stretch-evoked responses in bladders excised from trpv1−/− mice.

Similar content being viewed by others

References

  1. de Groat, W.C. & Yoshimura, N. Pharmacology of the lower urinary tract. Annu. Rev. Pharmacol. Toxicol. 41, 691–721 (2001).

    Article  CAS  Google Scholar 

  2. Caterina, M.J. & Julius, D. Sense and specificity: a molecular identity for nociceptors. Curr. Opin. Neurobiol. 9, 525–530 (1999).

    Article  CAS  Google Scholar 

  3. Chuang, Y.C. et al. Analysis of the afferent limb of the vesicovascular reflex using neurotoxins, resiniferatoxin and capsaicin. Am. J. Physiol. 281, R1302–R1310 (2001).

    CAS  Google Scholar 

  4. Chancellor, M.B. Discussion: resiniferatoxin-preliminary data. Urology 55 (Suppl.), 65–66 (2000).

    Article  CAS  Google Scholar 

  5. Birder, L.A. et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA 98, 13396–13401 (2001).

    Article  CAS  Google Scholar 

  6. Avelino, A., Cruz, C., Nagy, I. & Cruz, F. Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109, 787–798 (2002).

    Article  CAS  Google Scholar 

  7. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  8. Namasivavayam, S., Eardley, I. & Morrison, J.F. Purinergic sensitive neurotransmission in the urinary bladder: an in vitro study in the rat. BJU Int. 84, 854–860 (1999).

    Article  Google Scholar 

  9. Ferguson, D.R., Kennedy, I. & Burton, T.J. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J. Physiol. 505, 503–511 (1997).

    Article  CAS  Google Scholar 

  10. Vlaskovska, M. et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci. 21, 5670–5677 (2001).

    Article  CAS  Google Scholar 

  11. Cockayne, D.A. et al. Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  Google Scholar 

  12. Bodin, P. & Burnstock, G. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J. Cardiovasc. Pharmacol. 38, 900–908 (2001).

    Article  CAS  Google Scholar 

  13. Bodin, P. & Burnstock, G. Purinergic signaling: ATP release. Neurochem. Res. 26, 959–969 (2001).

    Article  CAS  Google Scholar 

  14. Burnstock, G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol. Sci. 22, 182–188 (2001).

    Article  CAS  Google Scholar 

  15. Truschel, S.T. et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol. Biol. Cell 13, 830–846 (2002).

    Article  CAS  Google Scholar 

  16. Lecci, A. et al. Urodynamic effects induced by intravesical capsaicin in rats and hamsters. Auton. Neurosci. 91, 37–46 (2001).

    Article  CAS  Google Scholar 

  17. Fovaeus, M., Fujiwara, M., Hogestatt, E.D., Persson, K. & Andersson, K.E. A non-nitrergic smooth muscle relaxant factor released from the contracting rat urinary bladder. Acta Physiol. Scand. 162, 115–116 (1998).

    Article  CAS  Google Scholar 

  18. Cheng, C.L., Lui, J.C., Chang, S.Y., Ma, C.P. & de Groat, W.C. Effect of capsaicin on the micturition reflex in normal and chronic spinal cord injured cats. Am. J. Physiol. 277, R786–R794 (1999).

    CAS  PubMed  Google Scholar 

  19. Santicioli, P., Maggi, C.A. & Meli, A. The effect of capsaicin pretreatment on the cystometrograms of urethane anesthetized rats. J. Urol. 133, 700–703 (1985).

    Article  CAS  Google Scholar 

  20. Maggi, C.A., Santicioli, P., Giuliani, S., Furio, M. & Meli, A. The capsaicin-sensitive innervation of the rat urinary bladder: further studies on mechanisms regulating micturition threshold. J. Urol. 136, 696–700 (1986).

    Article  CAS  Google Scholar 

  21. Maggi, C.A., Santicioli, P. & Meli, A. The effects of topical capsaicin on rat urinary bladder motility in vivo. Eur. J. Pharmacol. 103, 41–50 (1984).

    Article  CAS  Google Scholar 

  22. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2, 695–702 (2000).

    Article  CAS  Google Scholar 

  23. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  Google Scholar 

  24. Lazzeri, M. et al. Intravesical capsaicin for treatment of severe bladder pain: a randomized placebo controlled study. J. Urol. 156, 947–952 (1996).

    Article  CAS  Google Scholar 

  25. Fowler, C.J. Intravesical treatment of overactive urinary bladder. Urology 55, 60–64 (2000).

    Article  CAS  Google Scholar 

  26. Birder, L.A., Apodaca, G., de Groat, W.C. & Kanai, A.J. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am. J. Physiol. 275, F226–F229 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 DK54824 and R01 DK57284 (to L.A.B.), R01 DK54425 (to G.A.), R01 HL57985 (to A.J.K.) and by grants from The American Cancer Society (RSG-01-063-01-CSM) and the Blaustein Pain Research Fund (to M.J.C.). We thank R.T. Evans and J. Wang for expert technical assistance, W. Shaner for assistance with graphics, K. Gabrielson for assistance with pathology and C.A. Maggi for his critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.A. Birder.

Ethics declarations

Competing interests

M. J. Caterina is an inventor on a patent for the use of the TRPV1 cDNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birder, L., Nakamura, Y., Kiss, S. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5, 856–860 (2002). https://doi.org/10.1038/nn902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing