Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo

A Corrigendum to this article was published on 01 June 2003

Abstract

Neural stem cells exist in the developing and adult nervous systems of all mammals, but the basic mechanisms that control their behavior are not yet well understood. Here, we investigated the role of Sonic hedgehog (Shh), a factor vital for neural development, in regulating adult hippocampal neural stem cells. We found high expression of the Shh receptor Patched in both the adult rat hippocampus and neural progenitor cells isolated from this region. In addition, Shh elicited a strong, dose-dependent proliferative response in progenitors in vitro. Furthermore, adeno-associated viral vector delivery of shh cDNA to the hippocampus elicited a 3.3-fold increase in cell proliferation. Finally, the pharmacological inhibitor of Shh signaling cyclopamine reduced hippocampal neural progenitor proliferation in vivo. This work identifies Shh as a regulator of adult hippocampal neural stem cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Patched in vitro and in vivo.
Figure 2: Shh induction of neural progenitor cell proliferation in vitro.
Figure 3: Differentiation of clonal cell populations expanded in Shh.
Figure 4: Shh induction of progenitor proliferation in vivo.
Figure 5: Progenitor cell differentiation.
Figure 6: Inhibition of Shh.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  2. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077 (1993).

    Article  CAS  Google Scholar 

  3. Weiss, S. et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393 (1996).

    Article  CAS  Google Scholar 

  4. Altman, J. & Das, G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  Google Scholar 

  5. Kaplan, M.S. & Hinds, J.W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 (1977).

    Article  CAS  Google Scholar 

  6. Gage, F.H., Kempermann, G., Palmer, T.D., Peterson, D.A. & Ray, J. Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266 (1998).

    Article  CAS  Google Scholar 

  7. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    Article  CAS  Google Scholar 

  8. Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  Google Scholar 

  9. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  Google Scholar 

  10. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  11. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    Article  CAS  Google Scholar 

  12. Hitoshi, S., Tropepe, V., Ekker, M. & van der Kooy, D. Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129, 233–244 (2002).

    CAS  PubMed  Google Scholar 

  13. Kempermann, G., Kuhn, H.G. & Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  Google Scholar 

  14. Aberg, M.A., Aberg, N.D., Hedbacker, H., Oscarsson, J. & Eriksson, P.S. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903 (2000).

    Article  CAS  Google Scholar 

  15. Lim, D.A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  Google Scholar 

  16. Taupin, P. et al. FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron 28, 385–397 (2000).

    Article  CAS  Google Scholar 

  17. Ruiz, I.A.A., Palma, V. & Dahmane, N. Hedgehog-Gli signalling and the growth of the brain. Nat. Rev. Neurosci. 3, 24–33 (2002).

    Article  Google Scholar 

  18. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  Google Scholar 

  19. Ericson, J. et al. Sonic Hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756 (1995).

    Article  CAS  Google Scholar 

  20. Hynes, M. et al. Induction of midbrain dopaminergic neurons by Sonic Hedgehog. Neuron 15, 35–44 (1995).

    Article  CAS  Google Scholar 

  21. Wechsler-Reya, R.J. & Scott, M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  Google Scholar 

  22. Britto, J., Tannahill, D. & Keynes, R. A critical role for Sonic hedgehog signaling in the early expansion of the developing brain. Nat. Neurosci. 5, 103–110 (2002).

    Article  CAS  Google Scholar 

  23. Berman, D.M. et al. Medulloblastoma growth inhibition by Hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  Google Scholar 

  24. Traiffort, E. et al. Discrete localizations of Hedgehog signalling components in the developing and adult rat nervous system. Eur. J. Neurosci. 11, 3199–3214 (1999).

    Article  CAS  Google Scholar 

  25. Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  Google Scholar 

  26. Sakurada, K., Ohshima-Sakurada, M., Palmer, T.D. & Gage, F.H. Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126, 4017–4026 (1999).

    CAS  PubMed  Google Scholar 

  27. Palmer, T.D., Takahashi, J. & Gage, F.H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404 (1997).

    Article  CAS  Google Scholar 

  28. Kaspar, B.K. et al. Adeno-associated virus effectively mediates conditional gene modification in the brain. Proc. Natl. Acad. Sci. USA 99, 2320–2325 (2002).

    Article  CAS  Google Scholar 

  29. Kaspar, B.K. et al. Targeted retrograde gene delivery for neuronal protection. Mol. Ther. 5, 50–56 (2002).

    Article  CAS  Google Scholar 

  30. Traiffort, E., Moya, K.L., Faure, H., Hassig, R. & Ruat, M. High expression and anterograde axonal transport of aminoterminal Sonic Hedgehog in the adult hamster brain. Eur. J. Neurosci. 14, 839–850 (2001).

    Article  CAS  Google Scholar 

  31. Uekama, K., Hirayama, F. & Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998).

    Article  CAS  Google Scholar 

  32. Huang, Z. & Kunes, S. Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 125, 3753–3764 (1998).

    CAS  PubMed  Google Scholar 

  33. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  34. Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  Google Scholar 

  35. Poncet, C. et al. Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of Sonic Hedgehog. Mech. Dev. 60, 13–32 (1996).

    Article  CAS  Google Scholar 

  36. Dahmane, N. & Ruiz-i-Altaba, A. Sonic Hedgehog regulates the growth and patterning of the cerebellum. Development 126, 3089–3100 (1999).

    PubMed  Google Scholar 

  37. Rowitch, D.H. et al. Sonic Hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965 (1999).

    Article  CAS  Google Scholar 

  38. Xie, J. et al. A role of PDGFRα in basal cell carcinoma proliferation. Proc. Natl. Acad. Sci. USA 98, 9255–9259 (2001).

    Article  CAS  Google Scholar 

  39. Hahn, H. et al. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J. Biol. Chem. 275, 28341–28344 (2000).

    Article  CAS  Google Scholar 

  40. Dahmane, N. et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201–5212 (2001).

    CAS  PubMed  Google Scholar 

  41. Amaral, D.G. & Kurz, J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J. Comp. Neurol. 240, 37–59 (1985).

    Article  CAS  Google Scholar 

  42. Altar, C.A. & DiStefano, P.S. Neurotrophin trafficking by anterograde transport. Trends Neurosci. 21, 433–437 (1998).

    Article  CAS  Google Scholar 

  43. van Praag, H., Kempermann, G. & Gage, F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999).

    Article  CAS  Google Scholar 

  44. Jin, K. et al. Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J. Neurosci. 22, 5365–5373 (2002).

    Article  CAS  Google Scholar 

  45. Gould, E., McEwen, B.S., Tanapat, P., Galea, L.A. & Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498 (1997).

    Article  CAS  Google Scholar 

  46. Conover, J.C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091–1097 (2000).

    Article  CAS  Google Scholar 

  47. Tanigaki, K. et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45–55 (2001).

    Article  CAS  Google Scholar 

  48. Pola, R. et al. The morphogen Sonic Hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 7, 706–711 (2001).

    Article  CAS  Google Scholar 

  49. Samulski, R.J., Chang, L.S. & Shenk, T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63, 3822–3828 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosenberg, M.B. et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hinh, D. Chai, N. Sherkat, L. Frost and M. Lucero for technical assistance. We also thank M.L. Gage for critical reading of the manuscript. This work was initiated with National Institutes of Health NRSA support to D.S. It was funded by an Office of Naval Research Young Investigator Grant to D.S. and a National Science Foundation graduate fellowship to K.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David V. Schaffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, K., Kaspar, B., Gage, F. et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6, 21–27 (2003). https://doi.org/10.1038/nn983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing