Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A developmental switch in the signaling cascades for LTP induction

Abstract

Long-term potentiation (LTP) is thought to be critically involved not only in learning and memory, but also during the activity-dependent developmental phases of neural circuit formation and refinement1,2. Whether the mechanisms underlying LTP change during this phase of postnatal development, however, is unknown. We report here that, unlike LTP in the more mature CA1 region of the hippocampus, LTP in neonatal rodent hippocampus (<9 postnatal days, <P9) requires cyclic AMP–dependent protein kinase A (PKA) but not Ca2+/calmodulin-dependent protein kinase II (CaMKII).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LTP in neonatal hippocampus does not require CaMKII.
Figure 2: LTP in neonatal hippocampus requires PKA.

Similar content being viewed by others

References

  1. Katz, L.C. & Shatz, C.J. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  2. Constantine-Paton, M. & Cline, H.T. Curr. Opin. Neurobiol. 8, 139–148 (1998).

    Article  CAS  Google Scholar 

  3. Malenka, R.C. & Nicoll, R.A. Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  4. Lisman, J., Schulman, H. & Cline, H. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  5. Kelly, P.T. & Vernon, P. Develop. Brain Res. 18, 211–224 (1985).

    Article  CAS  Google Scholar 

  6. Chang, B.H., Mukherji, S. & Soderling, T.R. Proc. Natl. Acad. Sci. USA 95, 10890–10895 (1998).

    Article  CAS  Google Scholar 

  7. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Science 279, 870–873 (1998).

    Article  CAS  Google Scholar 

  8. Adams, J.P. & Sweatt, J.D. Annu. Rev. Pharmacol. Toxicol. 42, 135–163 (2002).

    Article  CAS  Google Scholar 

  9. Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E.M. Neuron 15, 1403–1414 (1995).

    Article  CAS  Google Scholar 

  10. Chavez-Noriega, L.E. & Stevens, C.F. J. Neurosci. 14, 310–317 (1994).

    Article  CAS  Google Scholar 

  11. Chetkovich, D.M. & Sweatt, J.D. J. Neurochem. 61, 1933–1942 (1993).

    Article  CAS  Google Scholar 

  12. Rosenberg, G.B., Minocherhomjee, A. & Storm, D.R. Meth. Enzymol. 139, 776–791 (1987).

    Article  CAS  Google Scholar 

  13. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  14. Harris, K.M. & Kater, S.B. Annu. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  15. Tao, H.W., Zhang, L.I., Engert, F. & Poo, M. Neuron 31, 569–580 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

LTP is present at thalamocortical synapses in CaMKII(T286A) mutant mice. (a) Graph showing changes in neocortical CaMKII activity as a function of postnatal age. Values are expressed as a percentage of adult activity (>P60). (b) Example of LTP at thalamocortical synapses onto a layer IV neuron in P5 barrel cortex from a homozygous mutant animal. Inset shows sample EPSCs before and after pairing. (Calibration bars: 10 pA, 10 msec) (c) Summary of LTP at thalamocortical synapses in P4-7 homozygote CaMKII(T286A) mice (n=7). (d) Comparison of LTP magnitude in wild-type mice (n=34; some data from2), heterozygote CaMKII(T286A) mutant mice (n=3) and homozygote CaMKII(T286A) mutant mice (n=7). (GIF 8 kb)

Supplementary Fig. 2.

P42/44 MAPK is required for LTP in mature but not in neonatal hippocampus. (a) Example (1) and summary (2) of effects of the p42/44 MAPK cascade inhibitor PD98059 on LTP in P7-8 hippocampus (Control, n=7; PD98059, n=8). (b) Example (1) and summary (2) of effects of PD98059 on LTP in P>27 hippocampus (Control, n=6; PD98059, n=5). (GIF 11 kb)

Supplementary Fig. 3.

PKA activation increases mEPSC amplitude in neonatal but not in mature hippocampus. (a) Example of mEPSCs before and after forskolin treatment in P7 and P27 hippocampus. Four consecutive traces in each condition are shown (Calibration bars; 20 pA, 1 sec). (b) Averaged mEPSC (n=300-500) before and after forskolin treatment. (c) Summary of effects of forskolin on frequency and amplitude of mEPSCs in P7,8 and >P26 hippocampus. (PDF 593 kb)

Supplementary Methods (PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, H., Barth, A., Stellwagen, D. et al. A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6, 15–16 (2003). https://doi.org/10.1038/nn985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing